[1] O. Ljungberg, Measurement of overall equipment effectiveness as a basis for TPM activities, Int. J. Oper. Prod. Manag. 18 (5) (1998) 495-507. [2] F. Yacoub, J.F. MacGregor, Analysis of equipment performance in processes with complex serial-parallel structures, Ind. Eng. Chem. Res. 48 (2009) 7181-7185. [3] K.S. Chen, M.L. Huang, P.L. Chang, Performance evaluation on manufacturing times, Int. J. Adv. Manuf. Technol. 31 (2006) 335-341. [4] Z.Q. Geng, Y.M. Han, X.B. Gu, Q.X. Zhu, Energy efficiency estimation based on data fusion strategy: case study of ethylene product industry, Ind. Eng. Chem. Res. 51 (25) (2012) 8526-8534. [5] Q.H. Shen, H.Y. Su, L. Zhu, S. Lu, Benchmark determination for key performance indicators of manufacturing equipment, CIESC J. 63 (9) (2012) 2958-2964. [6] M.A. Younes, M. Shahtout, M.N. Damir, A parameters design approach to improve product quality and equipment performance in hot rolling, J. Mater. Process. Technol. 171 (2006) 83-92. [7] A.S. Irshad, Y. Jamil, K.M. Rauf, A.M. Syed, Evaluation of performance inmanufacturing organization through productivity and quality, Afr. J.Bus. Manag. 5 (6) (2011) 2211-2219. [8] J.A. Garza-Reyes, S. Eldridge, K.D. Barber, H. Soriano-Meier, Overall equipment effectiveness (OEE) and process capability (PC) measures, Int. J. Qual. Reliab. Manag. 27 (1) (2010) 48-62. [9] C.C. Yuen, S.K. Aatmeeyata Gupta, A.K. Ray, Multi-objective optimization of membrane separation modules using genetic algorithm, J. Membr. Sci. 176 (2000) 177-196. [10] ISO/DIS 22400-2. “Automation systems and integration—key performance indicators for manufacturing operations management-Part 2: Definitions and descriptions”. [11] L. Zhu, H.Y. Su, Q.H. Shen, Evaluation architecture of manufacturing execution system based on key performance indicators in process industry, Comput. Integr. Manuf. Syst. 18 (12) (2012) 2643-2649. [12] S.Q. Wang, L.K. Dai, L. Yu, Process Control Engineering, Chemical Industry Press, Beijing, 2008. (in Chinese). [13] T. Tosukhowong, Dynamic Real-time Optimization and Control of an Integrated Plant, Ph. D. Thesis, Georgia Institute of Technology, Notrh Avenue, 2006. [14] Y. Shi, Chemical Engineering Manual, Chemical Industry Press, Beijing, 1996. (in Chinese). [15] S.J. Li, H. Wang, F. Qian, Multi-objective genetic algorithm and its applications in chemical engineering, Comput. Appl. Chem. 20 (6) (2003) 755-760 (in Chinese). [16] F. Xu, X.L. Luo, Margin analysis and control design of FCCU regenerator based on dynamic optimization (II) Solution and result analysis, CIESC J. 60 (3) (2009) 683-690. [17] J.D. Schaffer,Multi-objective optimization with vector evaluated genetic algorithms, Proceedings of the International Conference on Genetic Algorithms and their Application, 1985, pp. 93-100, (Pittsburgh). [18] C.A. Coello, G.T. Pulido, M.S. Lechuga, Handing multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput. 8 (3) (2004) 256-279. [19] K. Deb, A. Pratap, S. Agrawal, et al., A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197. [20] C. Schweiger, Process Synthesis, Design, and Control: Optimization with Dynamic Models and Discrete Decisions, Princeton University, Princeton, 1999. [21] S.J. Mu, H.Y. Su, Y. Gu, J. Chu, Multi-objective optimization of industrial purified terephthalic acid oxidation process, Chin. J. Chem. Eng. 11 (5) (2003) 536-541. [22] W.F. Hou, H.Y. Su, S.J. Mu, J. Chu, Multi-objective optimization of the industrial naphtha catalytic reforming process, Chin. J. Chem. Eng. 15 (1) (2007) 75-80. [23] Y.Q. Jiao, H.Y. Su, Z.W. Liao,W.F. Hou,Modeling and multi-objective optimization of refinery hydrogen network, Chin. J. Chem. Eng. 19 (6) (2011) 990-998. |