中国化学工程学报 ›› 2021, Vol. 38 ›› Issue (10): 30-42.DOI: 10.1016/j.cjche.2021.03.013
Shaobo Wang1,2, Yunchao Zhao1,2, Zeyu Zhang1,2, Yalong Zhang1,2, Linlin Li1,2,3
收稿日期:
2021-02-19
修回日期:
2021-03-19
出版日期:
2021-10-28
发布日期:
2021-12-02
通讯作者:
Linlin Li
基金资助:
Shaobo Wang1,2, Yunchao Zhao1,2, Zeyu Zhang1,2, Yalong Zhang1,2, Linlin Li1,2,3
Received:
2021-02-19
Revised:
2021-03-19
Online:
2021-10-28
Published:
2021-12-02
Contact:
Linlin Li
Supported by:
摘要: Metal and amino acid (AA), as two kinds of entities, have been widely involved in biomaterials and nanomedicines. Recently, the marriage of them has developed new nanoformulations, amino acid-metal coordinated nanomaterials (AMCNs), which show great biomedical application potential in cancer therapy, antibacterial applications, biomedical imaging, etc. With the respective characteristics of metal and AA with rich biological and chemical properties, AMCNs can not only act as drug carriers with specific tumor targeting ability, but also realize synergistic therapy and imaging-guided therapy. Although the design and synthesis of amino acid-metal coordinated nanomaterials have been in-depth investigated, there are few systematic reviews on their biomedical application. In this review, we give a comprehensive summary of recent progresses in the design, fabrication, and biomedical applications of AMCNs. We also propose the future outlooks and challenges in aforementioned field. We expect that this review would contribute some inspiration for future research and development for amino acid metal coordinated nanomaterials.
Shaobo Wang, Yunchao Zhao, Zeyu Zhang, Yalong Zhang, Linlin Li. Recent advances in amino acid-metal coordinated nanomaterials for biomedical applications[J]. 中国化学工程学报, 2021, 38(10): 30-42.
Shaobo Wang, Yunchao Zhao, Zeyu Zhang, Yalong Zhang, Linlin Li. Recent advances in amino acid-metal coordinated nanomaterials for biomedical applications[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 30-42.
[1] C.D. Wilborn, C.M. Kerksick, B.I. Campbell, L.W. Taylor, B.M. Marcello, C.J. Rasmussen, M.C. Greenwood, A. Almada, R.B. Kreider, Effects of zinc magnesium aspartate (ZMA) supplementation on training adaptations and markers of anabolism and catabolism, J. Int. Soc. Sports Nutr. 1 (2) (2004) 12-20 [2] C. Murphy, P. Newsholme, Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production, Clin. Sci. (Lond) 95 (4) (1998) 397-407 [3] A. Brugarolas, M. Gosalvez, Treatment of cancer by an inducer of reverse transformation, Lancet 1 (1980) 68-70 [4] Y. Nonaka, J. Shimada, H. Nonaka, N. Koike, N. Aoki, H. Kobayashi, H. Kase, K. Yamaguchi, F. Suzuki, Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1, 3-Dipropyl-8-(3, 4-dimethoxystyryl)-7-methylxanthine, J. Med. Chem. 36 (23) (1993) 3731-3733 [5] K. Vollmann, R. Qurishi, J. Hockemeyer, C.E. Müller, Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2, Molecules 13 (2) (2008) 348-359 [6] P.C. Bruijnincx, P.J. Sadler, New trends for metal complexes with anticancer activity, Curr. Opin. Chem. Biol. 12 (2) (2008) 197-206 [7] E. Meggers, Exploring biologically relevant chemical space with metal complexes, Curr. Opin. Chem. Biol. 11 (3) (2007) 287-292 [8] C. Abbehausen, S.F. Sucena, M. Lancellotti, T.A. Heinrich, E.P. Abrão, C.M. Costa-Neto, A.L.B. Formiga, P.P. Corbi, Synthesis, spectroscopic characterization, DFT studies, and antibacterial and antitumor activities of a novel water soluble Pd(II) complex with l-alliin, J. Mol. Struct. 1035 (2013) 421-426 [9] R.A. Jockusch, A.S. Lemoff, E.R. Williams, Effect of metal ion and water coordination on the structure of a gas-phase amino acid, J. Am. Chem. Soc. 123 (49) (2001) 12255-12265 [10] A.R. Riscoe, C.J. Wrasman, A.A. Herzing, A.S. Hoffman, A. Menon, A. Boubnov, M. Vargas, S.R. Bare, M. Cargnello, Transition state and product diffusion control by polymer-nanocrystal hybrid catalysts, Nat. Catal. 2 (10) (2019) 852-863 [11] Q.U.A. Qurrat-Ul-ain, J. Khatoon, M.R. Shah, M.I. Malik, I.A.T. Khan, S. Khurshid, R. Naz, Convenient pH-responsive removal of Acid Black 1 by green l-histidine/iron oxide magnetic nanoadsorbent from water: Performance and mechanistic studies, RSC Adv. 9 (6) (2019) 2978-2996 [12] H.S. Qiao, J. Jia, H.W. Shen, S.B. Zhao, E.P. Chen, W. Chen, B. Di, C. Hu, Capping silica nanoparticles with tryptophan-mediated cucurbit[8]uril complex for targeted intracellular drug delivery triggered by tumor-overexpressed IDO1 enzyme, Adv. Healthc. Mater. 8 (13) (2019) 1900174 [13] Y.R. Zhang, S.Q. Wang, S.L. Shen, B.X. Zhao, A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition, Chem. Eng. J. 233 (2013) 258-264 [14] I. Antal, M. Koneracka, M. Kubovcikova, V. Zavisova, I. Khmara, D. Lucanska, L. Jelenska, I. Vidlickova, M. Zatovicova, S. Pastorekova, N. Bugarova, M. Micusik, M. Omastova, P. Kopcansky, D, l-lysine functionalized Fe3O4 nanoparticles for detection of cancer cells, Colloids Surf. B Biointerfaces 163 (2018) 236-245 [15] K.L. Fan, H. Wang, J.Q. Xi, Q. Liu, X.Q. Meng, D.M. Duan, L.Z. Gao, X.Y. Yan, Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site, Chem. Commun. (Camb) 53 (2) (2016) 424-427 [16] S.M. Pormazar, M.H. Ehrampoush, A. Dalvand, Removal of humic acid from aqueous solution by Fe3O4@L-arginine magnetic nanoparticle: Kinetic and equilibrium studies, Int. J. Environ. Anal. Chem. 100 (2020) 1-16 [17] A. Dalvand, R. Nabizadeh, M. Reza Ganjali, M. Khoobi, S. Nazmara, A. Hossein Mahvi, Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: Optimization, reusability, kinetic and equilibrium studies, J. Magn. Magn. Mater. 404 (2016) 179-189 [18] Y. Li, P. Zhao, T. Gong, H. Wang, X. Jiang, H. Cheng, Y. Liu, Y. Wu, W. Bu, Redox dyshomeostasis strategy for hypoxic tumor therapy based on DNAzyme-loaded electrophilic ZIFs, Angew. Chem. Int. Ed. Engl. 59 (50) (2020) 22537-22543 [19] P.R. Zhao, Z.M. Tang, X.Y. Chen, Z.Y. He, X.H. He, M. Zhang, Y.Y. Liu, D.D. Ren, K.L. Zhao, W.B. Bu, Ferrous-cysteine-phosphotungstate nanoagent with neutral pH Fenton reaction activity for enhanced cancer chemodynamic therapy, Mater. Horiz. 6 (2) (2019) 369-374 [20] M. Qi, H. Pan, H. Shen, X. Xia, C. Wu, X. Han, X. He, W. Tong, X. Wang, Q. Wang, Nanogel multienzyme mimics synthesized by biocatalytic ATRP and metal coordination for bioresponsive fluorescence imaging, Angew. Chem. Int. Ed. Engl. 59 (29) (2020) 11748-11753 [21] S. Binita Chanu, M.K. Raza, S. Banerjee, P.R. Mina, D. Musib, M. Roy, ROS dependent antitumour activity of photo-activated iron(III) complexes of amino acids, J. Chem. Sci. 131 (2) (2019) 1-11 [22] T. Liu, R.H. Jin, P.Y. Yuan, Y.K. Bai, B.L. Cai, X. Chen, Intracellular enzyme-triggered assembly of amino acid-modified gold nanoparticles for accurate cancer therapy with multimode, ACS Appl. Mater. Interfaces 11 (32) (2019) 28621-28630 [23] I. Imaz, M. Rubio-Martínez, W.J. Saletra, D.B. Amabilino, D. Maspoch, Amino acid based metal-organic nanofibers, J. Am. Chem. Soc. 131 (51) (2009) 18222-18223 [24] H. Qiu, F. Pu, Z.W. Liu, X.M. Liu, K. Dong, C.Q. Liu, J.S. Ren, X.G. Qu, Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing, Nano Res. 13 (2) (2020) 496-502 [25] F. Pu, X. Liu, B.L. Xu, J.S. Ren, X.G. Qu, Miniaturization of metal-biomolecule frameworks based on stereoselective self-assembly and potential application in water treatment and as antibacterial agents, Chemistry 18 (14) (2012) 4322-4328 [26] B.J. Ma, S. Wang, F. Liu, S. Zhang, J.Z. Duan, Z. Li, Y. Kong, Y.H. Sang, H. Liu, W.B. Bu, L.L. Li, Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy, J. Am. Chem. Soc. 141 (2) (2019) 849-857 [27] Y.J. Yun, A.J. Gellman, Enantioselective separation on naturally chiral metal surfaces: D, L-aspartic acid on Cu(3, 1, 17)(R&S) surfaces, Angew. Chem. Int. Ed. Engl. 52 (12) (2013) 3394-3397 [28] M.K. Wu, J.J. Zhou, F.Y. Yi, C. Chen, Y.L. Li, Q. Li, K. Tao, L. Han, High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes, Dalton Trans. 46 (48) (2017) 16821-16827 [29] Q. Xin, H.H. Zhang, Q. Liu, Z.J. Dong, H.Y. Xiang, J.R. Gong, Extracellular biocoordinated zinc nanofibers inhibit malignant characteristics of cancer cell, Nano Lett. 15 (10) (2015) 6490-6493 [30] S.K. Li, Q.L. Zou, Y.X. Li, C.Q. Yuan, R.R. Xing, X.H. Yan, Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly, J. Am. Chem. Soc. 140 (34) (2018) 10794-10802 [31] C. Li, K. Deng, Z.Y. Tang, L. Jiang, Twisted metal-amino acid nanobelts: chirality transcription from molecules to frameworks, J. Am. Chem. Soc. 132 (23) (2010) 8202-8209 [32] J.W. Song, C.Q. Yuan, T.F. Jiao, R.R. Xing, M.Y. Yang, D.J. Adams, X.H. Yan, Multifunctional antimicrobial biometallohydrogels based on amino acid coordinated self-assembly, Small 16 (8) (2020) 1907309 [33] C.H. Chen, J.H. Fang, C.K. Xu, Ultrasonication mediated fabrication of glycine coated gadolinium oxide nanoparticles as MRI contrast agents, J. Clust. Sci. 32 (2021) 773-778 [34] L.C. He, M. Brasino, C.C. Mao, S. Cho, W. Park, A.P. Goodwin, J.N. Cha, DNA-assembled core-satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy, Small 13 (24) (2017) 1700504 [35] S.J. Wang, M. Wahiduzzaman, L. Davis, A. Tissot, W. Shepard, J. Marrot, C. Martineau-Corcos, D. Hamdane, G. Maurin, S. Devautour-Vinot, C. Serre, A robust zirconium amino acid metal-organic framework for proton conduction, Nat. Commun. 9 (1) (2018) 4937 [36] Y. Huang, Z.H. Tang, X.F. Zhang, H.Y. Yu, H. Sun, X. Pang, X.S. Chen, pH-Triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: Preparation and in vitro evaluation, Biomacromolecules 14 (6) (2013) 2023-2032 [37] B.J. Ma, Y. Wu, S. Zhang, S.C. Wang, J.C. Qiu, L.L. Zhao, D.D. Guo, J.Z. Duan, Y.H. Sang, L.L. Li, H.D. Jiang, H. Liu, Terbium-aspartic acid nanocrystals with chirality-dependent tunable fluorescent properties, ACS Nano 11 (2) (2017) 1973-1981 [38] J.Z. Zheng, Y.J. Wu, K. Deng, M. He, L.C. He, J. Cao, X.G. Zhang, Y.L. Liu, S.X. Li, Z.Y. Tang, Chirality-discriminated conductivity of metal-amino acid biocoordination polymer nanowires, ACS Nano 10 (9) (2016) 8564-8570 [39] W.R. Yang, J.J. Gooding, Z.C. He, Q. Li, G.N. Chen, Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles, J. Nanosci. Nanotechnol. 7 (2) (2007) 712-716 [40] P. Steunenberg, A. Ruggi, N.S. van den Berg, T. Buckle, J. Kuil, F.W. van Leeuwen, A.H. Velders, Phosphorescence imaging of living cells with amino acid-functionalized tris(2-phenylpyridine)iridium(III) complexes, Inorg. Chem. 51 (4) (2012) 2105-2114 [41] E. Yang, L. Wang, F. Wang, Q.P. Lin, Y. Kang, J. Zhang, Zeolitic metal-organic frameworks based on amino acid, Inorg. Chem. 53 (19) (2014) 10027-10029 [42] L. Li, M.M. Zhen, H.Y. Wang, Z.H. Sun, W. Jia, Z.P. Zhao, C. Zhou, S. Liu, C.R. Wang, C.L. Bai, Functional gadofullerene nanoparticles trigger robust cancer immunotherapy based on rebuilding an immunosuppressive tumor microenvironment, Nano Lett. 20 (6) (2020) 4487-4496 [43] F.J. Hoeben, P. Jonkheijm, E.W. Meijer, A.P. Schenning, About supramolecular assemblies of pi-conjugated systems, Chem. Rev. 105 (4) (2005) 1491-1546 [44] Y. Wang, T.Y. Yu, H.B. Zhang, Y.C. Luo, P.F. Xu, Hydrogen-bond-mediated supramolecular iminium ion catalysis, Angew. Chem. Int. Ed. Engl. 51 (49) (2012) 12339-12342 [45] P. Selvakannan, S. Mandal, S. Phadtare, R. Pasricha, M. Sastry, Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible, Langmuir 19 (8) (2003) 3545-3549 [46] G.B. Yang, L.G. Xu, J. Xu, R. Zhang, G.S. Song, Y. Chao, L.Z. Feng, F.X. Han, Z.L. Dong, B. Li, Z. Liu, Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer, Nano Lett. 18 (4) (2018) 2475-2484 [47] Z. Ruan, L. Liu, W. Jiang, S.Y. Li, Y.C. Wang, L.F. Yan, NIR imaging-guided combined photodynamic therapy and chemotherapy by a pH-responsive amphiphilic polypeptide prodrug, Biomater. Sci. 5 (2) (2017) 313-321 [48] X.M. Yao, L. Chen, X.F. Chen, Z.G. Xie, J.X. Ding, C.L. He, J.P. Zhang, X.S. Chen, pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy, Acta Biomater. 25 (2015) 162-171 [49] H. Wu, C.Y. Tian, Y.F. Zhang, C. Yang, S.P. Zhang, Z.Y. Jiang, Stereoselective assembly of amino acid-based metal-biomolecule nanofibers, Chem. Commun. (Camb) 51 (29) (2015) 6329-6332 [50] Y.L. Liu, Z.Y. Tang, Nanoscale biocoordination polymers: Novel materials from an old topic, Chemistry 18 (4) (2012) 1030-1037 [51] E.V. Anokhina, Y.B. Go, Y. Lee, T. Vogt, A.J. Jacobson, Chiral three-dimensional microporous nickel aspartate with extended Ni-O-Ni bonding, J. Am. Chem. Soc. 128 (30) (2006) 9957-9962 [52] N. Al-Janabi, H.R. Deng, J. Borges, X.F. Liu, A. Garforth, F.R. Siperstein, X.L. Fan, A facile post-synthetic modification method to improve hydrothermal stability and CO2 selectivity of CuBTC metal-organic framework, Ind. Eng. Chem. Res. 55 (29) (2016) 7941-7949 [53] D. Sarma, K.V. Ramanujachary, S.E. Lofland, T. Magdaleno, S. Natarajan, Amino acid based MOFs: Synthesis, structure, single crystal to single crystal transformation, magnetic and related studies in a family of cobalt and nickel aminoisophthales, Inorg. Chem. 48 (24) (2009) 11660-11676 [54] G.S. Jeong, A.C. Kathalikkattil, R. Babu, Y.G. Chung, D. Won Park, Cycloaddition of CO2 with epoxides by using an amino-acid-based Cu(II)-tryptophan MOF catalyst, Chin. J. Catal. 39 (1) (2018) 63-70 [55] Y.W. Zhao, Y. Wang, X.M. Zhang, Homochiral MOF as circular dichroism sensor for enantioselective recognition on nature and chirality of unmodified amino acids, ACS Appl. Mater. Interfaces 9 (24) (2017) 20991-20999 [56] Y. Lu, H.C. Zhang, J.Y. Chan, R.W. Ou, H.J. Zhu, M. Forsyth, E.M. Marijanovic, C.M. Doherty, P.J. Marriott, M.M.B. Holl, H.T. Wang, Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules, Angew. Chem. Int. Ed. Engl. 58 (47) (2019) 16928-16935 [57] F. Wang, C.L. Feng, Metal-ion-mediated supramolecular chirality of l-phenylalanine based hydrogels, Angew. Chem. Int. Ed. Engl. 57 (20) (2018) 5655-5659 [58] J. Yeom, P.P.G. Guimaraes, H.M. Ahn, B.K. Jung, Q.Y. Hu, K. McHugh, M.J. Mitchell, C.O. Yun, R. Langer, A. Jaklenec, Chiral supraparticles for controllable nanomedicine, Adv. Mater. 32 (1) (2020) 1903878 [59] D.L. van der Velden, L.R. Hoes, H. van der Wijngaart, J.M. van Berge Henegouwen, E. van Werkhoven, P. Roepman, R.L. Schilsky, W.W.J. de Leng, A.D.R. Huitema, B. Nuijen, P.M. Nederlof, C.M.L. van Herpen, D.J.A. de Groot, L.A. Devriese, A. Hoeben, M.J.A. de Jonge, M. Chalabi, E.F. Smit, A.J. de Langen, N. Mehra, M. Labots, E. Kapiteijn, S. Sleijfer, E. Cuppen, H.M.W. Verheul, H. Gelderblom, E.E. Voest, The drug rediscovery protocol facilitates the expanded use of existing anticancer drugs, Nature 574 (7776) (2019) 127-131 [60] F.M. Behan, F. Iorio, G. Picco, E. Goncalves, C.M. Beaver, G. Migliardi, R. Santos, Y. Rao, F. Sassi, M. Pinnelli, R. Ansari, S. Harper, D.A. Jackson, R. McRae, R. Pooley, P. Wilkinson, D. van der Meer, D. Dow, C. Buser-Doepner, A. Bertotti, L. Trusolino, E.A. Stronach, J. Saez-Rodriguez, K. Yusa, M.J. Garnett, Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens, Nature 568 (7753) (2019) 511-516 [61] X.L. Fu, Y.B. Shi, T.T. Qi, S.N. Qiu, Y. Huang, X.G. Zhao, Q.F. Sun, G.M. Lin, Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting, Signal Transduct. Target. Ther. 5 (1) (2020) 262 [62] M. Dobbelstein, U. Moll, Targeting tumour-supportive cellular machineries in anticancer drug development, Nat. Rev. Drug Discov. 13 (3) (2014) 179-196 [63] N. André, M. Carré, E. Pasquier, Metronomics: towards personalized chemotherapy, Nat. Rev. Clin. Oncol. 11 (7) (2014) 413-431 [64] X. Zeng, J. Sun, S.P. Li, J.Y. Shi, H. Gao, W. Sun Leong, Y.Q. Wu, M.H. Li, C.X. Liu, P. Li, J. Kong, Y.Z. Wu, G.J. Nie, Y.M. Fu, G. Zhang, Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent, Nat. Commun. 11 (1) (2020) 567 [65] M.E. Davis, Z.G. Chen, D.M. Shin, Nanoparticle therapeutics: An emerging treatment modality for cancer, Nat. Rev. Drug Discov. 7 (9) (2008) 771-782 [66] S.D. Li, L. Huang, Pharmacokinetics and biodistribution of nanoparticles, Mol. Pharm. 5 (4) (2008) 496-504 [67] K.B. Garbutcheon-Singh, M.P. Grant, B.W. Harper, A.M. Krause-Heuer, M. Manohar, N. Orkey, J.R. Aldrich-Wright, Transition metal based anticancer drugs, Curr. Top Med. Chem. 11 (5) (2011) 521-542 [68] L. Kelland, The resurgence of platinum-based cancer chemotherapy, Nat. Rev. Cancer 7 (8) (2007) 573-584 [69] B. Fisher, P. Carbone, S.G. Economou, R. Frelick, A. Glass, H. Lerner, C. Redmond, M. Zelen, P. Band, D.L. Katrych, N. Wolmark, E.R. Fisher, 1-Phenylalanine mustard (L-PAM) in the management of primary breast cancer. A report of early findings, The New Engl. J. Med. 292 (3) (1975) 117-122 [70] C.Z. Gao, T.S. Wang, J. Chen, Y. Zhang, B. Yang, S.H. Gou, Preparation and in vitro cytotoxicity of oxaliplatin derivatives with chiral amino acid as the carrier group, J. Coord. Chem. 67 (13) (2014) 2195-2203 [71] S. Li, W. Su, H. Wu, T. Yuan, C. Yuan, J. Liu, G. Deng, X. Gao, Z. Chen, Y. Bao, F. Yuan, S. Zhou, H. Tan, Y. Li, X. Li, L. Fan, J. Zhu, A.T. Chen, F. Liu, Y. Zhou, M. Li, X. Zhai, J. Zhou, Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids, Nat. Biomed. Eng. 4 (7) (2020) 704-716 [72] G. Lan, K. Ni, W. Lin, Nanoscale metal-organic frameworks for phototherapy of cancer, Coord. Chem. Rev. 379 (2019) 65-81 [73] R.H. Yan, X. Zhao, J.L. Lei, Q. Zhou, Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex, Nature 568 (7750) (2019) 127-130 [74] M.J. Lukey, W.P. Katt, R.A. Cerione, Targeting amino acid metabolism for cancer therapy, Drug Discov. Today 22 (5) (2017) 796-804 [75] L. Li, X.S. Di, M.R. Wu, Z.S. Sun, L. Zhong, Y.J. Wang, Q. Fu, Q.M. Kan, J. Sun, Z.G. He, Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy, Nanomed. : Nanotechnol. Biol. Med. 13 (3) (2017) 987-998 [76] Z.R. Wu, H.K. Lim, S.J. Tan, A. Gautam, H.W. Hou, K.W. Ng, N.S. Tan, C.Y. Tay, Potent-by-design: Amino acids mimicking porous nanotherapeutics with intrinsic anticancer targeting properties, Small 16 (34) (2020) 2003757 [77] E.C. Friesema, R. Docter, E.P. Moerings, F. Verrey, E.P. Krenning, G. Hennemann, T.J. Visser, Thyroid hormone transport by the heterodimeric human system L amino acid transporter, Endocrinology 142 (10) (2001) 4339-4348 [78] Z.J. Wang, D.X. Chi, X.C. Wu, Y.L. Wang, X.X. Lin, Z.C. Xu, H.Z. Liu, J. Sun, Z.G. He, Y.J. Wang, Tyrosine modified irinotecan-loaded liposomes capable of simultaneously targeting LAT1 and ATB0, + for efficient tumor therapy, J. Control. Release 316 (2019) 22-33 [79] S. Wang, F. Li, R. Qiao, X. Hu, H. Liao, L. Chen, J. Wu, H. Wu, M. Zhao, J. Liu, R. Chen, X. Ma, D. Kim, J. Sun, T.P. Davis, C. Chen, J. Tian, T. Hyeon, D. Ling, Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics, ACS Nano 12 (2018) 12380-12392 [80] H. Chen, B. Li, X. Ren, S. Li, Y. Ma, S. Cui, Y. Gu, Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy, Biomaterials 33 (2012) 8461-8476 [81] D.S. Lind, Arginine and cancer, J. Nutr. 134 (2004) 2837S-2841S [82] L. Feun, M. You, C.J. Wu, M.T. Kuo, M. Wangpaichitr, S. Spector, N. Savaraj, Arginine deprivation as a targeted therapy for cancer, Curr. Pharm. Des. 14 (2008) 1049-1057 [83] D.J. Stuehr, C.F. Nathan, Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells, J. Exp. Med. 169 (5) (1989) 1543-1555 [84] W.P. Fan, N. Lu, P. Huang, Y. Liu, Z. Yang, S. Wang, G.C. Yu, Y.J. Liu, J.K. Hu, Q.J. He, J.L. Qu, T.F. Wang, X.Y. Chen, Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy, Angew. Chem. Int. Ed. Engl. 56 (5) (2017) 1229-1233 [85] Y. Hu, T. Lv, Y. Ma, J. Xu, Y. Zhang, Y. Hou, Z. Huang, Y. Ding, Nanoscale coordination polymers for synergistic NO and chemodynamic therapy of liver cancer, Nano Lett. 19 (2019) 2731-2738 [86] V. Mailänder, K. Landfester, Interaction of nanoparticles with cells, Biomacromolecules 10 (9) (2009) 2379-2400 [87] J.Z. Du, T.M. Sun, W.J. Song, J. Wu, J. Wang, A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery, Angew. Chem. Int. Ed. Engl. 49 (21) (2010) 3621-3626 [88] H.F. Ye, L. Jin, R.Z. Hu, Z.F. Yi, J. Li, Y.L. Wu, X.G. Xi, Z.R. Wu, Poly(gamma, L-glutamic acid)-cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice, Biomaterials 27 (35) (2006) 5958-5965 [89] K. Rijal, X. Bao, C.S. Chow, Amino acid-linked platinum(ii) analogues have altered specificity for RNA compared to cisplatin, Chem. Commun. 50 (30) (2014) 3918-3920 [90] X. Chen, X. Cheng, A.H. Soeriyadi, S.M. Sagnella, X. Lu, J.A. Scott, S.B. Lowe, M. Kavallaris, J.J. Gooding, Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli, Biomater. Sci. 2 (1) (2014) 121-130 [91] Z.T. Wang, Y.L. Dai, Z. Wang, O. Jacobson, F.W. Zhang, B.C. Yung, P.F. Zhang, H.Y. Gao, G. Niu, G. Liu, X.Y. Chen, Metal ion assisted interface re-engineering of a ferritin nanocage for enhanced biofunctions and cancer therapy, Nanoscale 10 (3) (2018) 1135-1144 [92] K.H. Min, H.S. Min, H.J. Lee, D.J. Park, J.Y. Yhee, K. Kim, I.C. Kwon, S.Y. Jeong, O.F. Silvestre, X. Chen, Y.S. Hwang, E.C. Kim, S.C. Lee, pH-controlled gas-generating mineralized nanoparticles: A theranostic agent for ultrasound imaging and therapy of cancers, ACS Nano 9 (1) (2015) 134-145 [93] S. Banerjee, A.R. Chakravarty, Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity, Acc. Chem. Res. 48 (7) (2015) 2075-2083 [94] Y.X. Li, Q.L. Zou, C.Q. Yuan, S.K. Li, R.R. Xing, X.H. Yan, Amino acid coordination driven self-assembly for enhancing both the biological stability and tumor accumulation of curcumin, Angew. Chem. Int. Ed. Engl. 57 (52) (2018) 17084-17088 [95] M.F. Huo, L.Y. Wang, Y. Chen, J.L. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery, Nat. Commun. 8 (1) (2017) 357 [96] S.Y. Fu, S. Wang, X.D. Zhang, A.H. Qi, Z.R. Liu, X. Yu, C.F. Chen, L.L. Li, Structural effect of Fe3O4 nanoparticles on peroxidase-like activity for cancer therapy, Colloids Surf. B: Biointerfaces 154 (2017) 239-245 [97] L.S. Lin, J.B. Song, L. Song, K.M. Ke, Y.J. Liu, Z.J. Zhou, Z.Y. Shen, J. Li, Z. Yang, W. Tang, G. Niu, H.H. Yang, X.Y. Chen, Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy, Angew. Chem. Int. Ed. Engl. 57 (18) (2018) 4902-4906 [98] Y. Liu, J.D. Wu, Y.H. Jin, W.Y. Zhen, Y.H. Wang, J.H. Liu, L.H. Jin, S.T. Zhang, Y. Zhao, S.Y. Song, Y. Yang, H.J. Zhang, Copper(I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor, Adv. Funct. Mater. 29 (50) (2019) 1904678 [99] X.W. Wang, X.Y. Zhong, Z.B. Zha, G. He, Z.H. Miao, H.L. Lei, Q.Y. Luo, R. Zhang, Z. Liu, L. Cheng, Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy, Appl. Mater. Today 18 (2020) 100464 [100] S.K. Maji, A.K. Mandal, K.T. Nguyen, P. Borah, Y.L. Zhao, Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene, ACS Appl. Mater. Interfaces 7 (18) (2015) 9807-9816 [101] P.G. Ma, H.H. Xiao, C. Yu, J.H. Liu, Z.Y. Cheng, H.Q. Song, X.Y. Zhang, C.X. Li, J.Q. Wang, Z. Gu, J. Lin, Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species, Nano Lett. 17 (2) (2017) 928-937 [102] Z.M. Tang, H.L. Zhang, Y.Y. Liu, D.L. Ni, H. Zhang, J.W. Zhang, Z.W. Yao, M.Y. He, J.L. Shi, W.B. Bu, Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy, Adv. Mater. 29 (47) (2017) 1701683 [103] T. Li, Z.W. Zhao, Q. Wang, P.F. Xie, J.H. Ma, Strongly enhanced Fenton degradation of organic pollutants by cysteine: An aliphatic amino acid accelerator outweighs hydroquinone analogues, Water Res. 105 (2016) 479-486 [104] Y.Y. Bian, K. Kim, T. Ngo, I. Kim, O.N. Bae, K.M. Lim, J.H. Chung, Silver nanoparticles promote procoagulant activity of red blood cells: A potential risk of thrombosis in susceptible population, Part. Fibre Toxicol. 16 (1) (2019) 9 [105] T. Hirai, Y. Yoshioka, N. Izumi, K. Ichihashi, T. Handa, N. Nishijima, E. Uemura, K. Sagami, H. Takahashi, M. Yamaguchi, K. Nagano, Y. Mukai, H. Kamada, S. Tsunoda, K.J. Ishii, K. Higashisaka, Y. Tsutsumi, Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice, Nat. Nanotechnol. 11 (9) (2016) 808-816 [106] S. Shankar, J.W. Rhim, Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films, Carbohydr. Polym. 130 (2015) 353-363 [107] J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: A common cause of persistent infections, Science 284 (5418) (1999) 1318-1322 [108] I. Kolodkin-Gal, D. Romero, S.G. Cao, J. Clardy, R. Kolter, R. Losick, D-amino acids trigger biofilm disassembly, Science 328 (5978) (2010) 627-629 [109] M.S. Chen, S.H. Zhang, Z.L. He, Controlled block polypeptide composed of d-type amino acids: A therapeutics delivery platform to inhibit biofilm formation of drug-resistant bacteria, ACS Appl. Bio. Mater. 3 (9) (2020) 6343-6350 [110] A.I. Hochbaum, I. Kolodkin-Gal, L. Foulston, R. Kolter, J. Aizenberg, R. Losick, Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development, J. Bacteriol. 193 (20) (2011) 5616-5622 [111] Q. Xin, Q. Liu, L.L. Geng, Q.J. Fang, J.R. Gong, Chiral nanoparticle as a new efficient antimicrobial nanoagent, Adv. Healthc. Mater. 6 (4) (2017) 1601011 [112] W. Wei, W. Bing, J. Ren, X. Qu, Near infrared-caged d-amino acids multifunctional assembly for simultaneously eradicating biofilms and bacteria, Chem. Commun. (Camb) 51 (63) (2015) 12677-12679 [113] S. Roy, P.K. Das, Antibacterial hydrogels of amino acid-based cationic amphiphiles, Biotechnol. Bioeng. 100 (4) (2008) 756-764 [114] A. Shome, S. Dutta, S. Maiti, P.K. Das, In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: Development of antibacterial soft nanocomposites, Soft Matter 7 (6) (2011) 3011-3022 [115] A.Y. Gahane, P. Ranjan, V. Singh, R.K. Sharma, N. Sinha, M. Sharma, R. Chaudhry, A.K. Thakur, Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases, Soft Matter 14 (12) (2018) 2234-2244 [116] I. Irwansyah, Y.Q. Li, W.X. Shi, D.P. Qi, W.R. Leow, M.B. Tang, S.Z. Li, X.D. Chen, Gram-positive antimicrobial activity of amino acid-based hydrogels, Adv. Mater. 27 (4) (2015) 648-654 [117] K. Dong, Z. Liu, J.H. Liu, S. Huang, Z.H. Li, Q.H. Yuan, J.S. Ren, X.G. Qu, Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T(1)-weighted magnetic resonance imaging, Nanoscale 6 (4) (2014) 2211-2217 [118] S. Hatz, J.D.C. Lambert, P.R. Ogilby, Measuring the lifetime of singlet oxygen in A single cell: Addressing the issue of cell viability, Photochem. Photobiol. Sci. 6 (10) (2007) 1106-1116 [119] S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy, RSC Adv. 4 (8) (2014) 3974-3983 [120] D.P. Linklater, V.A. Baulin, X. Le Guével, J.B. Fleury, E. Hanssen, T.H.P. Nguyen, S. Juodkazis, G. Bryant, R.J. Crawford, P. Stoodley, E.P. Ivanova, Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes, Adv. Mater. 32 (52) (2020) 2005679 [121] T.F. DeMaria, B.R. Briggs, D.J. Lim, N. Okazaki, Experimental otitis media with effusion following middle ear inoculation of nonviable H influenzae, Ann. Otol. Rhinol. Laryngol. 93 (1984) 52-56 [122] Y.J. Sang, W. Li, H. Liu, L. Zhang, H. Wang, Z.W. Liu, J.S. Ren, X.G. Qu, Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria, Adv. Funct. Mater. 29 (22) (2019) 1900518 [123] K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, S. Tobita, Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector, Phys. Chem. Chem. Phys. 11 (42) (2009) 9850-9860 [124] Y. Chen, M.D. Barkley, Toward understanding tryptophan fluorescence in proteins, Biochemistry 37 (28) (1998) 9976-9982 [125] D.Y. Kim, M. Kim, S. Shinde, R.G. Saratale, J.S. Sung, G. Ghodake, Temperature dependent synthesis of tryptophan-functionalized gold nanoparticles and their application in imaging human neuronal cells, ACS Sustain. Chem. Eng. 5 (9) (2017) 7678-7689 [126] S.S. Ling, X.H. Yang, C.Y. Li, Y.J. Zhang, H.C. Yang, G.C. Chen, Q.B. Wang, Tumor microenvironment-activated NIR-II nanotheranostic system for precise diagnosis and treatment of peritoneal metastasis, Angew. Chem. Int. Ed. Engl. 59 (18) (2020) 7219-7223 [127] J.J. Ma, P.J. Li, W.W. Wang, S.H. Wang, X.T. Pan, F.R. Zhang, S.S. Li, S. Liu, H.Y. Wang, G. Gao, B.L. Xu, Q.P. Yuan, H.Y. Shen, H.Y. Liu, Biodegradable poly(amino acid)-gold-magnetic complex with efficient endocytosis for multimodal imaging-guided chemo-photothermal therapy, ACS Nano 12 (9) (2018) 9022-9032 |
[1] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries[J]. 中国化学工程学报, 2023, 60(8): 80-89. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[3] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[4] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag[J]. 中国化学工程学报, 2023, 58(6): 11-19. |
[5] | Xinyao Sun, Liu Zhao, Xu Hou, Hao Zhou, Huimin Qiao, Chenggong Song, Jing Huang, Enxian Yuan. Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air[J]. 中国化学工程学报, 2023, 58(6): 155-162. |
[6] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization[J]. 中国化学工程学报, 2023, 57(5): 10-16. |
[7] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite[J]. 中国化学工程学报, 2023, 57(5): 98-108. |
[8] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. 中国化学工程学报, 2023, 56(4): 299-313. |
[9] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine[J]. 中国化学工程学报, 2023, 55(3): 41-48. |
[10] | Fei Wang, Zhiyuan Bi, Lifeng Ding, Qingyuan Yang. Large-scale computational screening of metal–organic frameworks for D2/H2 separation[J]. 中国化学工程学报, 2023, 54(2): 323-330. |
[11] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism[J]. 中国化学工程学报, 2023, 53(1): 101-123. |
[12] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid[J]. 中国化学工程学报, 2023, 53(1): 133-141. |
[13] | Jiancheng Shu, Xiangfei Zeng, Danyang Sun, Yong Yang, Zuohua Liu, Mengjun Chen, Daoyong Tan. Enhanced Mn2+ solidification and NH4+-N removal from electrolytic manganese metal residue via surfactants[J]. 中国化学工程学报, 2022, 49(9): 205-212. |
[14] | Yao Zhong, Cuiying Huang, Lijie Li, Qiang Deng, Jun Wang, Zheling Zeng, Shuguang Deng. Postsynthetic acid modification of amino-tagged metal-organic frameworks: Structure-functionrelationship for catalytic 5-hydroxymethylfurfural synthesis[J]. 中国化学工程学报, 2022, 49(9): 245-252. |
[15] | Linyang Wang, Qiang Wang, Yongqi Liu, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Catalytic conversion of asphaltenes to BTXN using metal-loaded modified HZSM-5[J]. 中国化学工程学报, 2022, 49(9): 253-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||