[1] A. Sakakibara, A structural model of softwood lignin, Wood Sci. Technol. 14 (2) (1980) 89–100. [2] J.I. Hedges, J.R. Ertel, Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products, Anal. Chem. 54 (2) (1982) 174–178. [3] T.D. Jiang. Lignin-Second Edition. Chemical Industry Press, Beijing, 2009. [4] J. Ni, Y.T. Wu, F. Tao, Y. Peng, P. Xu, A coenzyme-free biocatalyst for the value-added utilization of lignin-derived aromatics, J. Am. Chem. Soc. 140 (47) (2018) 16001–16005. [5] F.Y. Peng, R.P. Qiao, Q.L. Lu, C.L. Sun. Studies on the lignin-based flocculant synthesis and its use in the treatment of paper effluent. Chin. J. Ind. Water Treat., 28 (5) (2008) 24-27. [6] M.P. Pandey, C.S. Kim, Lignin depolymerization and conversion: A review of thermochemical methods, Chem. Eng. Technol. 34 (1) (2011) 29–41. [7] P.C.R. Pinto, C.E. Costa, A.E. Rodrigues, Oxidation of lignin from eucalyptus globulus pulping liquors to produce syringaldehyde and vanillin, Ind. Eng. Chem. Res. 52 (12) (2013) 4421–4428. [8] J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev. 110 (6) (2010) 3552–3599. [9] H. Lange, S. Decina, C. Crestini, Oxidative upgrade of lignin - Recent routes reviewed, Eur. Polym. J. 49 (6) (2013) 1151–1173. [10] Q. Xiang, Y.Y. Lee, Production of oxychemicals from precipitated hardwood lignin, Appl. Biochem. Biotechnol. 91-93 (1–9) (2001) 71–80. [11] R. DiCosimo, H.C. Szabo, Oxidation of lignin model compounds using single-electron-transfer catalysts, J. Org. Chem. 53 (8) (1988) 1673–1679. [12] A. Gaspar, D.V. Evtuguin, C.P. Neto, Oxygen bleaching of kraft pulp catalysed by Mn(III)-substituted polyoxometalates, Appl. Catal. A Gen. 239 (1–2) (2003) 157–168. [13] F.G. Sales, L.C.A. Maranhão, N.M. Lima Filho, C.A.M. Abreu, Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes, Ind. Eng. Chem. Res. 45 (20) (2006) 6627–6631. [14] J.C. Villar, A. Caperos, F. García-Ochoa, Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant, Wood Sci. Technol. 35 (3) (2001) 245–255. [15] H. Woo, K.H. Park, Recent developments in hybrid iron oxide-noble metal nanocatalysts for organic reactions, Catal. Today 278 (2016) 209–226. [16] V.R. Mate, A. Jha, U.D. Joshi, K.R. Patil, M. Shirai, C.V. Rode, Effect of preparation parameters on characterization and activity of Co3O4 catalyst in liquid phase oxidation of lignin model substrates, Appl. Catal. A Gen. 487 (2014) 130–138. [17] W.X. Guan, X. Chen, S.H. Jin, C. Li, C.W. Tsang, C.H. Liang, Highly stable Nb2O5-Al2O3 composites supported Pt catalysts for hydrodeoxygenation of diphenyl ether, Ind. Eng. Chem. Res. 56 (47) (2017) 14034–14042. [18] L. Dong, L.F. Lin, X. Han, X.Q. Si, X.H. Liu, Y. Guo, F. Lu, S. Rudić, S.F. Parker, S.H. Yang, Y.Q. Wang, Breaking the limit of lignin monomer production via cleavage of interunit carbon-carbon linkages, Chem 5 (6) (2019) 1521–1536. [19] C. Fargues, Á. Mathias, J. Silva, A. Rodrigues, Kinetics of vanillin oxidation, Chem. Eng. Technol. 19 (2) (1996) 127–136. [20] C. Fargues, Á. Mathias, A. Rodrigues, Kinetics of vanillin production from kraft lignin oxidation, Ind. Eng. Chem. Res. 35 (1) (1996) 28–36. [21] S.G. Santos, A.P. Marques, D.L.D. Lima, D.V. Evtuguin, V.I. Esteves, Kinetics of eucalypt lignosulfonate oxidation to aromatic aldehydes by oxygen in alkaline medium, Ind. Eng. Chem. Res. 50 (1) (2011) 291–298. [22] TAPPI Test Method T222 om-11 (2011) Acid-insoluble lignin in wood and pulp. In: Tappi test methods. Technical Association of the Pulp and Paper Industry, Atlanta, GA, 2011. [23] P.C. Rodrigues Pinto, E.A. Borges da Silva, A.E. Rodrigues, Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes, Ind. Eng. Chem. Res. 50 (2) (2011) 741–748. [24] J.R. Lobbes, H.P. Fitznar, G. Kattner, High-performance liquid chromatography of lignin-derived phenols in environmental samples with diode array detection, Anal. Chem. 71 (15) (1999) 3008–3012. [25] M.S. Zhou, K. Huang, X.Q. Qiu, D.J. Yang. Content determination of phenolic hydroxyl and carboxylic acid content of lignin by aqueous phase potentiometric titration. J. Chem. Ind. Eng., 63 (1) (2012) 258-265. [26] S. Adachi, M. Tanimoto, M. Tanaka, R. Matsuno, Kinetics of the alkaline nitrobenzene oxidation of lignin in rice straw, Chem. Eng. J. 49 (2) (1992) B17–B21. [27] C.A.E. Costa, P.C.R. Pinto, A.E. Rodrigues, Radar tool for lignin classification on the perspective of its valorization, Ind. Eng. Chem. Res. 54 (31) (2015) 7580–7590. [28] V.E. Tarabanko, D.V. Petukhov, G.E. Selyutin, New mechanism for the catalytic oxidation of lignin to vanillin, Kinetics Catal. 45 (4) (2004) 569–577. [29] V.E. Tarabanko, N.A. Fomova, B.N. Kuznetsov, N.M. Ivanchenko, A.V. Kudryashev, On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen, React. Kinetics Catal. Lett. 55 (1) (1995) 161–170. [30] G.X. Wu, M. Heitz, E. Chornet, Improved alkaline oxidation process for the production of aldehydes (vanillin and syringaldehyde) from steam-explosion hardwood lignin, Ind. Eng. Chem. Res. 33 (3) (1994) 718–723. [31] R. Dubey, R.S. Sharma, D.P. Dubey, S.B. Bhardwaj. Crop productivity, weed dynamics and economics of various rice-based cropping systems in Madhya Pradesh. Int. J. Agricult. Stat. Sci., 7 (2) (2011) 635-644. [32] K.Z. Zhu, C.B. Liu, X.K. Ye, Y. Wu, Catalysis of hydrotalcite-like compounds in liquid phase oxidation: (I) phenol hydroxylation, Appl. Catal. A Gen. 168 (2) (1998) 365–372. [33] G.Z. Jiang, D.J. Nowakowski, A.V. Bridgwater, A systematic study of the kinetics of lignin pyrolysis, Thermochimica Acta 498 (1–2) (2010) 61–66. [34] Tang, Liang. B, Kinetics of the liquid-phase oxidation of toluene by air, Ind. Eng. Chem. Res. 46 (20) (2007) 6442–6448. |