[1] P. Sosis, U. Zoller, A.T. Hubbard, Handbook of Detergents: Part F: Production, CRC Press, Boca Raton (2009)Doi: www.semanticscholar.org/paper/f97d3a24dd7bd64f35ea4ed574d25fe9900db593 [2] W.J. Lu, J.W. Zhang, S.Q. Zhang, C. Ji, Y. Wu, H.Y. Chen, Y.X. Fang, J.X. Dong, B.Y. Liu, Synthesis of linear alkylbenzenes over beta zeolites with enhanced transport and surface activity, Ind. Eng. Chem. Res. 60 (33) (2021) 12275–12281.Doi: 10.1021/acs.iecr.1c02815 [3] J.A. Kocal, B.V. Vora, T. Imai, Production of linear alkylbenzenes, Appl. Catal. A Gen. 221 (1–2) (2001) 295–301.Doi: 10.1016/s0926-860x(01)00808-0 [4] P. Hudec, A. Nociar, A. Smiešková, T. Jakubík, Liquid-phase alkylation of benzene by long-chain linear α-olefins over Y and mordenite type zeolite catalysts. Influence of Si/Al ratio. Molecular Sieves: From Basic Research to Industrial Applications, Proceedings of the 3rd International Zeolite Symposium (3rd FEZA), Elsevier, Amsterdam, 2005(1795–1802).Doi: 10.1016/s0167-2991(05)80540-3 [5] M.H. Han, Z. Cui, C. Xu, W. Chen, Y. Jin, Synthesis of linear alkylbenzene catalyzed by Hβ-zeolite, Appl. Catal. A Gen. 238 (1) (2003) 99–107.Doi: 10.1016/s0926-860x(02)00334-4 [6] H. Faghihian, M.H. Mohammadi, Surface properties of pillared acid-activated bentonite as catalyst for selective production of linear alkylbenzene, Appl. Surf. Sci. 264 (2013) 492–499.Doi: 10.1016/j.apsusc.2012.10.050 [7] W. Aslam, M.A.B. Siddiqui, B. Rabindran Jermy, A. Aitani, J. Čejka, S. Al-Khattaf, Selective synthesis of linear alkylbenzene by alkylation of benzene with 1-dodecene over desilicated zeolites, Catal. Today 227 (2014) 187–197.Doi: 10.1016/j.cattod.2013.10.015 [8] J. Liang, Y.Y. Wang, X.C. Li, M. Xu, S.C. Shen, C. Liu, W.H. Fu, W.C. Tao, Z.Q. Yuan, Z.D. Wang, W.M. Yang, Synthesis of Al-BEC zeolite as an efficient catalyst for the alkylation of benzene with 1-dodecene, Microporous Mesoporous Mater. 328 (2021) 111448.Doi: 10.1016/j.micromeso.2021.111448 [9] J.J. Wang, Y.Y. Chuang, H.Y. Hsu, T.C. Tsai, Toward industrial catalysis of zeolite for linear alkylbenzene synthesis: a mini review, Catal. Today 298 (2017) 109–116.Doi: 10.1016/j.cattod.2017.05.046 [10] H. Lee, J. Shin, K. Lee, H.J. Choi, A. Mayoral, N.Y. Kang, S.B. Hong, Synthesis of thermally stable SBT and SBS/SBT intergrowth zeolites, Science 373 (6550) (2021) 104–107.Doi: 10.1126/science.abi7208 [11] S.Y. Li, J.F. Li, M. Dong, S.B. Fan, T.S. Zhao, J.G. Wang, W.B. Fan, Strategies to control zeolite particle morphology, Chem. Soc. Rev. 48 (3) (2019) 885–907.Doi: 10.1039/c8cs00774h [12] N. Wang, Q.M. Sun, T.J. Zhang, A. Mayoral, L. Li, X. Zhou, J. Xu, P. Zhang, J.H. Yu, Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets, J. Am. Chem. Soc. 143 (18) (2021) 6905–6914.Doi: 10.1021/jacs.1c00578 [13] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature 461 (7261) (2009) 246–249.Doi: pubmed.ncbi.nlm.nih.gov/19741706/ [14] Q. Zhang, J.H. Yu, A. Corma, Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities, Adv. Mater. 32 (44) (2020) e2002927.Doi: pubmed.ncbi.nlm.nih.gov/32697378/ [15] D.D. Xu, Y.H. Ma, Z.F. Jing, L. Han, B. Singh, J. Feng, X.F. Shen, F.L. Cao, P. Oleynikov, H. Sun, O. Terasaki, S.N. Che, Π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets, Nat. Commun. 5 (2014) 4262.Doi: 10.1038/ncomms5262 [16] V. Valtchev, L. Tosheva, Porous nanosized particles: preparation, properties, and applications, Chem. Rev. 113 (8) (2013) 6734–6760.Doi: pubmed.ncbi.nlm.nih.gov/23705950/ [17] S.F. Lin, Y.C. Zhi, W. Chen, H. Li, W.N. Zhang, C.Y. Lou, X.Q. Wu, S. Zeng, S.T. Xu, J.P. Xiao, A.M. Zheng, Y.X. Wei, Z.M. Liu, Molecular routes of dynamic autocatalysis for methanol-to-hydrocarbons reaction, J. Am. Chem. Soc. 143 (31) (2021) 12038–12052.Doi: 10.1021/jacs.1c03475 [18] H. Dai, Y.F. Shen, T.M. Yang, C. Lee, D.L. Fu, A. Agarwal, T.T. Le, M. Tsapatsis, J.C. Palmer, B.M. Weckhuysen, P.J. Dauenhauer, X.D. Zou, J.D. Rimer, Finned zeolite catalysts, Nat. Mater. 19 (10) (2020) 1074–1080.Doi: 10.1038/s41563-020-0753-1 [19] M. Khaleel, A.J. Wagner, K.A. Mkhoyan, M. Tsapatsis, On the rotational intergrowth of hierarchical FAU/EMT zeolites, Angew. Chem. Int. Ed Engl. 53 (36) (2014) 9456–9461.Doi: pubmed.ncbi.nlm.nih.gov/25044073/ [20] Y. Cao, Alkylation of benzene with dodecene. The activity and selectivity of zeolite type catalysts as a function of the porous structure, Appl. Catal. A Gen. 184 (2) (1999) 231–238.Doi: 10.1016/s0926-860x(99)00089-7 [21] B. Wang, C.W. Lee, T.-X. Cai, S.-E. Park, Benzene alkylation with 1-dodecene over H-mordenite zeolite, Catal. Lett. 76 (2001) 99-103. [22] J.S. Lin, J.J. Wang, J. Wang, I. Wang, R.J. Balasamy, A. Aitani, S. Al-Khattaf, T.C. Tsai, Catalysis of alkaline-modified mordenite for benzene alkylation of diolefin-containing dodecene for linear alkylbenzene synthesis, J. Catal. 300 (2013) 81–90.Doi: 10.1016/j.jcat.2012.12.031 [23] S. Samanta, N.K. Mal, P. Kumar, A. Bhaumik, Hydrothermally synthesized high silica mordenite as an efficient catalyst in alkylation reaction under liquid phase condition, J. Mol. Catal. A Chem. 215 (1–2) (2004) 169–175.Doi: 10.1016/j.molcata.2004.01.017 [24] Z.Z. Ma, X. Hou, B.C. Chen, L. Zhao, E.X. Yuan, T.T. Cui, Experiment and modeling of coke formation and catalyst deactivation in n-heptane catalytic cracking over HZSM-5 zeolites, Chin. J. Chem. Eng. , Doi: 10.1016/j.cjche.2022.04.017 Doi: 10.1016/j.cjche.2022.04.017 [25] M. Díaz, E. Epelde, J. Valecillos, S. Izaddoust, A.T. Aguayo, J. Bilbao, Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene, Appl. Catal. B Environ. 291 (2021) 120076.Doi: 10.1016/j.apcatb.2021.120076 [26] X.Y. Ren, J.P. Cao, S.X. Zhao, X.Y. Zhao, X.B. Feng, T.L. Liu, Y. Li, J. Zhang, X.Y. Wei, Insights into coke location of catalyst deactivation during in situ catalytic reforming of lignite pyrolysis volatiles over cobalt-modified zeolites, Appl. Catal. A Gen. 613 (2021) 118018.Doi: 10.1016/j.apcata.2021.118018 [27] D. Rojo-Gama, M. Nielsen, D.S. Wragg, M. Dyballa, J. Holzinger, H. Falsig, L.F. Lundegaard, P. Beato, R.Y. Brogaard, K.P. Lillerud, U. Olsbye, S. Svelle, A straightforward descriptor for the deactivation of zeolite catalyst H-ZSM-5, ACS Catal. 7 (12) (2017) 8235–8246.Doi: 10.1021/acscatal.7b02193 [28] S. Inagaki, S. Shinoda, Y. Kaneko, K. Takechi, R. Komatsu, Y. Tsuboi, H. Yamazaki, J.N. Kondo, Y. Kubota, Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins, ACS Catal. 3 (1) (2013) 74–78.Doi: 10.1021/cs300426k [29] A.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, J. Bilbao, Deactivation kinetics of a HZSM-5 zeolite catalyst treated with alkali for the transformation of bio-ethanol into hydrocarbons, AIChE J. 58 (2) (2012) 526–537.Doi: 10.1002/aic.12600 [30] A. Corma, V. Fornes, S.B. Pergher, T.L.M. Maesen, J.G. Buglass, Delaminated zeolite precursors as selective acidic catalysts, Nature 396 (6709) (1998) 353–356.Doi: 10.1038/24592 [31] Y.C. Shi, E.H. Xing, W.H. Xie, F.M. Zhang, X.H. Mu, X.T. Shu, Shape selectivity of beta and MCM-49 zeolites in liquid-phase alkylation of benzene with ethylene, J. Mol. Catal. A Chem. 418-419 (2016) 86–94.Doi: 10.1016/j.molcata.2016.03.039 [32] J.Q. Chen, Y.Z. Li, Q.Q. Hao, H.Y. Chen, Z.T. Liu, C.Y. Dai, J.B. Zhang, X.X. Ma, Z.W. Liu, Controlled direct synthesis of single- to multiple-layer MWW zeolite, Natl. Sci. Rev. 8 (7) (2021) nwaa236. [33] E. Dumitriu, D. Meloni, R. Monaci, V. Solinas, Liquid-phase alkylation of phenol with t-butanol over various catalysts derived from MWW-type precursors, Comptes Rendus Chimie 8 (3–4) (2005) 441–456.Doi: 10.1016/j.crci.2004.10.007 [34] Z.D. Wang, M.O. Cichocka, Y. Luo, B. Zhang, H.M. Sun, Y. Tang, W.M. Yang, Controllable direct-syntheses of delaminated MWW-type zeolites, Chin. J. Catal. 41 (7) (2020) 1062–1066.Doi: 10.1016/s1872-2067(20)63545-8 [35] W.M. Yang, Z.D. Wang, H.M. Sun, B. Zhang, Advances in development and industrial applications of ethylbenzene processes, Chin. J. Catal. 37 (1) (2016) 16–26.Doi: 10.1016/s1872-2067(15)60965-2 [36] Linear alkylbenzene/alpha-olefins, Focus on Surfactants 2015 (2015) 2. [37] H.M. Torres Galvis, K.P. de Jong, Catalysts for production of lower olefins from synthesis gas: a review, ACS Catal. 3 (9) (2013) 2130–2149.Doi: 10.1021/cs4003436 [38] P. Tian, Y.X. Wei, M. Ye, Z.M. Liu, Methanol to olefins (MTO): from fundamentals to commercialization, ACS Catal. 5 (3) (2015) 1922–1938.Doi: 10.1021/acscatal.5b00007 [39] J.P. Zhao, J.B. Zhou, M. Ye, Z.M. Liu, Kinetic study on air regeneration of industrial methanol-to-olefin catalyst, Ind. Eng. Chem. Res. 59 (26) (2020) 11953–11961.Doi: 10.1021/acs.iecr.0c00153 [40] W.N. Zhang, M.Z. Zhang, S.T. Xu, S.S. Gao, Y.X. Wei, Z.M. Liu, Methylcyclopentenyl cations linking initial stage and highly efficient stage in methanol-to-hydrocarbon process, ACS Catal. 10 (8) (2020) 4510–4516.Doi: 10.1021/acscatal.0c00799 [41] Y.C. Shi, E.H. Xing, W.H. Xie, F.M. Zhang, X.H. Mu, X.T. Shu, Enhancing activity without loss of selectivity–Liquid-phase alkylation of benzene with ethylene over MCM-49 zeolites by TEAOH post-synthesis, Appl. Catal. A Gen. 497 (2015) 135–144.Doi: 10.1016/j.apcata.2015.03.005 [42] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15–50.Doi: 10.1016/0927-0256(96)00008-0 [43] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50. [44] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251-14269. [45] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J Chem Phys 132 (15) (2010) 154104.Doi: pubmed.ncbi.nlm.nih.gov/20423165 [46] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B Condens. Matter 50 (24) (1994) 17953–17979.Doi: pubmed.ncbi.nlm.nih.gov/9976227 [47] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (3) (1999) 1758–1775.Doi: 10.1103/physrevb.59.1758 [48] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12) (1976) 5188–5192.Doi: 10.1103/physrevb.13.5188 [49] Structure Commission of the International Zeolite Association<http://www.iza-structure.org/databases/>.http://www.iza-structure.org/databases/%3e. [50] K.F. Liu, S.J. Xie, S.L. Liu, G.L. Xu, N.N. Gao, L.Y. Xu, Catalytic role of different pore systems in MCM-49 zeolite for liquid alkylation of benzene with ethylene, J. Catal. 283 (1) (2011) 68–74.Doi: 10.1016/j.jcat.2011.07.004 [51] J. Qian, G. Xiong, J.X. Liu, C.Y. Liu, H.C. Guo, Hydrothermal synthesis of MCM-49 zeolite with cyclohexylamine template, Microporous Mesoporous Mater. 276 (2019) 192–200.Doi: 10.1016/j.micromeso.2018.09.034 [52] N. Chaouati, A. Soualah, M. Chater, M. Tarighi, L. Pinard, Mechanisms of coke growth on mordenite zeolite, J. Catal. 344 (2016) 354–364.Doi: 10.1016/j.jcat.2016.10.011 [53] Y. Nakasaka, T. Tago, H. Konno, A. Okabe, T. Masuda, Kinetic study for burning regeneration of coked MFI-type zeolite and numerical modeling for regeneration process in a fixed-bed reactor, Chem. Eng. J. 207-208 (2012) 368–376.Doi: 10.1016/j.cej.2012.06.138 [54] Y. Song, S.L. Liu, Q.X. Wang, L.Y. Xu, Y.C. Zhai, Coke burning behavior of a catalyst of ZSM-5/ZSM-11 co-crystallized zeolite in the alkylation of benzene with FCC off-gas to ethylbenzene, Fuel Process. Technol. 87 (4) (2006) 297–302.Doi: 10.1016/j.fuproc.2005.05.003 [55] Z.Q. Yang, R.R. Zhang, H.H. Zhang, H.G. Tang, R.X. Liu, S.J. Zhang, Comparative catalytic study on butene/isobutane alkylation over LaX and CeX zeolites: the influence of calcination atmosphere, Chin. J. Chem. Eng. 46 (2022) 173–183.Doi: 10.1016/j.cjche.2021.05.041 [56] W. Monama, E. Mohiuddin, B. Thangaraj, M.M. Mdleleni, D. Key, Oligomerization of lower olefins to fuel range hydrocarbons over texturally enhanced ZSM-5 catalyst, Catal. Today 342 (2020) 167–177.Doi: 10.1016/j.cattod.2019.02.061 [57] X.X. Wang, X.Y. Hu, C.S. Song, K.W. Lux, M. Namazian, T. Imam, Oligomerization of biomass-derived light olefins to liquid fuel: effect of alkali treatment on the HZSM-5 catalyst, Ind. Eng. Chem. Res. 56 (42) (2017) 12046 [58] O. Jan, K.L. Song, A. Dichiara, F.L.P. Resende, Ethylene oligomerization over Ni–Hβ heterogeneous catalysts, Ind. Eng. Chem. Res. 57 (31) (2018) 10241–10250.Doi: 10.1021/acs.iecr.8b01902 [59] Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C.T. Wang, X.J. Meng, H.Q. Yang, C. Mesters, F.S. Xiao, Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol, Science 367 (6474) (2020) 193–197.Doi: pubmed.ncbi.nlm.nih.gov/31919221 [60] S.W. Cao, Y.S. Shang, Y.S. Liu, J. Wang, Y. Sun, Y.J. Gong, G. Mo, Z.H. Li, P. Liu, “Desert Rose” MCM-22 microsphere: Synthesis, formation mechanism and alkylation performance, Microporous Mesoporous Mater. 315 (2021) 110910.http://dx.doi.org/10.1016/j.micromeso.2021.110910 [61] C.M. Wang, Y.D. Wang, Y.J. Du, G. Yang, Z.K. Xie, Computational insights into the reaction mechanism of methanol-to-olefins conversion in H-ZSM-5: nature of hydrocarbon pool, Catal. Sci. Technol. 6 (9) (2016) 3279–3288.Doi: 10.1039/c5cy01419k [62] D. Wang, C.M. Wang, G. Yang, Y.J. Du, W.M. Yang, First-principles kinetic study on benzene alkylation with ethanol vs. ethylene in H-ZSM-5, J. Catal. 374 (2019) 1–11.http://dx.doi.org/10.1016/j.jcat.2019.04.021 [63] S.Y. Xing, K.K. Liu, T.F. Wang, R.F. Zhang, M.H. Han, Elucidation of the mechanism and structure–reactivity relationship in zeolite catalyzed alkylation of benzene with propylene, Catal. Sci. Technol. 11 (8) (2021) 2792–2804. |