[1] A. Raj, Combustion kinetics of H2S and other sulfurous species with relevance to industrial processes, Prog. Energy Combust. Sci. 80 (2020) 100848.Doi: 10.1016/j.pecs.2020.100848 [2] D. Barba, F. Cammarota, V. Vaiano, E. Salzano, V. Palma, Experimental and numerical analysis of the oxidative decomposition of H2S, Fuel 198 (2017) 68-75.Doi: 10.1016/j.fuel.2016.12.038 [3] Y. Wang, Z.L. Wang, J.F. Pan, Y.X. Liu, Removal of gaseous hydrogen sulfide using Fenton reagent in a spraying reactor, Fuel 239 (2019) 70-75.Doi: 10.1016/j.fuel.2018.10.143 [4] M. Sassi, N. Amira, Chemical reactor network modeling of a microwave plasma thermal decomposition of H2S into hydrogen and sulfur, Int. J. Hydrog. Energy 37 (13) (2012) 10010-10019.Doi: 10.1016/j.ijhydene.2012.04.006 [5] S. An, J.C. Jung, Kinetic modeling of thermal reactor in Claus process using CHEMKIN-PRO software, Case Stud. Therm. Eng. 21 (2020) 100694.Doi: 10.1016/j.csite.2020.100694 [6] R. El-Bishtawi, N. Haimour, Claus recycle with double combustion process, Fuel Process. Technol. 86 (3) (2004) 245-260.Doi: 10.1016/j.fuproc.2004.04.001 [7] B. Mahmoodi, S.H. Hosseini, A. Raj, Hooman, K., A new acid gas destruction kinetic model for reaction furnace of an industrial sulfur recovery unit: A CFD study, Chem. Eng. Sci. 256 (2022) 117692.Doi: 10.1016/j.ces.2022.117692 [8] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Effect of benzene on product evolution in a H2S/O2 flame under Claus condition, Appl. Energy 145 (2015) 21-26.Doi: 10.1016/j.apenergy.2015.01.094 [9] S. Ibrahim, R. K. Rahman, A. Raj, A split-flow sulfur recovery process for the destruction of aromatic hydrocarbon contaminants in acid gas, J. Nat. Gas Sci. Eng. 97 (2022) 104378.Doi: 10.1016/j.jngse.2021.104378 [10] N.J. Nabikandi, S.Fatemi, Kinetic modelling of a commercial sulfur recovery unit based on Claus straight through process: Comparison with equilibrium model, J. Ind. Eng. Chem. 30 (2015) 50-63.Doi: 10.1016/j.jiec.2015.05.001 [11] A. Mehmood, An evaluation of kinetic models for the simulation of Claus reaction furnaces in sulfur recovery units under different feed conditions, J. Nat. Gas Sci. Eng. 74 (2020) 103106.Doi: 10.1016/j.jngse.2019.103106 [12] A.Y. Ibrahim,,, Energy and exergy studies of a Sulphur recovery unit in normal and optimized cases: A real starting up plant, Energy Convers. Manag. X 15 (2022) 100241.Doi: 10.1016/j.ecmx.2022.100241 [13] H.R. Mahdipoor, Feasibility study of a sulfur recovery unit containing mercaptans in lean acid gas feed, J. Nat. Gas Sci. Eng. 31 (2016) 585-588.Doi: 10.1016/j.jngse.2016.03.045 [14] N. Abumounshar,,, Novel processes for lean acid gas utilization for sulfur production with high efficiency, Chem. Eng. Sci. 248 (2022) 117194.Doi: 10.1016/j.ces.2021.117194 [15] Y. Li, Equilibrium prediction of acid gas partial oxidation with presence of CH4 and CO2 for hydrogen production, Appl. Therm. Eng. 107 (2016) 125-134.Doi: 10.1016/j.applthermaleng.2016.05.076 [16] S. Ibrahim, A. Raj, Kinetic simulation of acid gas (H2S and CO2) destruction for simultaneous syngas and sulfur recovery, Ind. Eng. Chem. Res. 55 (24) (2016) 6743-6752.Doi: 10.1021/acs.iecr.6b01176 [17] J.S. Eow, Recovery of sulfur from sour acid gas: A review of the technology, Environ. Prog. 21 (3) (2002) 143-162.Doi: 10.1002/ep.670210312 [18] I. Saanum, M. Ditaranto, Experimental study of oxy-fuel combustion under gas turbine conditions, Energy Fuels 31 (4) (2017) 4445-4451.Doi: 10.1021/acs.energyfuels.6b03114 [19] Q.W. Liu, W.Q. Zhong, R. Tang, H.Q. Yu, J.R. Gu, G.W. Zhou, A.B. Yu, Experimental tests on co-firing coal and biomass waste fuels in a fluidised bed under oxy-fuel combustion, Fuel 286 (2021) 119312.Doi: 10.1016/j.fuel.2020.119312 [20] F.M. Wang, B.X. Shen, J.C. Yang, S. Singh, Review of mercury formation and capture from CO2-enriched oxy-fuel combustion flue gas, Energy Fuels 31 (2) (2017) 1053-1064.Doi: 10.1021/acs.energyfuels.6b02420 [21] D.K. Hong, X. Guo, C.B. Wang, A reactive molecular dynamics study of HCN oxidation during pressurized oxy-fuel combustion, Fuel Process. Technol. 224 (2021) 107020.Doi: 10.1016/j.fuproc.2021.107020 [22] H. Selim, A.K. Gupta, A. Al Shoaibi, Effect of CO2 and N2 concentration in acid gas stream on H2S combustion, Appl. Energy 98 (2012) 53-58.Doi: 10.1016/j.apenergy.2012.02.072 [23] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Role of toluene to acid gas (H2S and CO2) combustion in H2/O2-N2 flame under Claus condition, Appl. Energy 149 (2015) 62-68.Doi: 10.1016/j.apenergy.2015.03.117 [24] H. Selim, S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames, Appl. Energy 113 (2014) 1134-1140.Doi: 10.1016/j.apenergy.2013.08.054 [25] Y. Li, Q.H. Guo, X.L. Yu, Z.H. Dai, Y.F. Wang, G.S. Yu, F.C. Wang, Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame, Appl. Energy 206 (2017) 947-958.Doi: 10.1016/j.apenergy.2017.07.113 [26] K. Karan, A.K. Mehrotra, L.A. Behie, A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to Claus plants, Chem. Eng. Sci. 54 (15-16) (1999) 2999-3006.Doi: 10.1016/S0009-2509(98)00475-8 [27] P.D. Clark, N.I. Dowling, M. Huang, W.Y. Svrcek, W.D. Monnery, Mechanisms of CO and COS formation in the Claus furnace, Ind. Eng. Chem. Res. 40 (2) (2001) 497-508.Doi: 10.1021/ie990871l [28] Y. Li, X.L. Yu, H.J. Li, Q.H. Guo, Z.H. Dai, G.S. Yu, F.C. Wang, Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition, Appl. Energy 190 (2017) 824-834.Doi: 10.1016/j.apenergy.2016.12.150 [29] H. Selim, S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under Claus conditions, Appl. Energy 109 (2013) 119-124.Doi: 10.1016/j.apenergy.2013.03.026 [30] Y. Li, Q.H. Guo, Z.H. Dai, Y.C. Dong, G.S. Yu, F.C. Wang, Study of oxidation for gas mixture of H2S and CH4 in a non-premixed flame under oxygen deficient condition, Appl. Therm. Eng. 117 (2017) 659-667.Doi: 10.1016/j.applthermaleng.2016.10.168 [31] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Xylene addition effects to H2S combustion under Claus condition, Fuel 150 (2015) 1-7.Doi: 10.1016/j.fuel.2015.02.001 [32] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Role of toluene in hydrogen sulfide combustion under Claus condition, Appl. Energy 112 (2013) 60-66.Doi: 10.1016/j.apenergy.2013.05.065 [33] H. Selim, A. Al Shoaibi, A.K. Gupta, Effect of H2S in methane/air flames on sulfur chemistry and products speciation, Appl. Energy 88 (8) (2011) 2593-2600.Doi: 10.1016/j.apenergy.2011.02.032 [34] B.A. Rabee, The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions, Energy 160 (2018) 1201-1207.Doi: 10.1016/j.energy.2018.07.061 [35] Y.A. Cengel, Heat Transfer: A Practical Approach, 2nd ed, Mc-Graw Hill, 2003. [36] W. Don, R.H. Green, Perry’s chemical engineers, Eighth Edition, McGraw-Hill, 2008 [37] S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE J. 18 (2) (1972) 361-371.Doi: 10.1002/aic.690180219 [38] H. Xiao,,, Study on counterflow premixed flames using high concentration ammonia mixed with methane, Fuel 275 (2020) 117902.Doi: 10.1016/j.fuel.2020.117902 [39] H.W. Zhu, S Lai, A Valera-Medina, J Li, H Fu, Effects of CO and H2 addition on OH* chemiluminescence characteristics in laminar rich inverse diffusion flames, Fuel 254 (2019) 115554. [40] S.R. Lee, S.H. Chung, On the structure of hydrogen diffusion flames with reduced kinetic mechanisms, Combust. Sci. Technol. 96 (4-6) (1994) 247-277.Doi: 10.1080/00102209408935358 [41] R.J. Kee, A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames, Symp. Int. Combust. 22 (1) (1989) 1479-1494.Doi: 10.1016/S0082-0784(89)80158-4 [42] A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, OPPDIF: A Fortran program for computing opposed-flow diffusion flames, National Technical Information Service, (1997). https://www.researchgate.net/publication/239888329_OPPDIF_A_Fortran_program_for_computing_opposed-flow_diffusion_flames. [43] P.X. Wang,,, Study on the effect of H2O on the formation of CO in the counterflow diffusion flame of H2/CO syngas in O2/H2O, Fuel 234 (2018) 516-525.Doi: 10.1016/j.fuel.2018.07.020 [44] V.V. Azatyan, Investigation of low-pressure flames of a number of compounds containing sulfur by the ESR method, Symp. Int. Combust. 12 (1) (1969) 989-994.Doi: 10.1016/S0082-0784(69)80477-7 [45] H. Selim, A. Al Shoaibi, A.K. Gupta, Experimental examination of flame chemistry in hydrogen sulfide-based flames, Appl. Energy 88 (8) (2011) 2601-2611.Doi: 10.1016/j.apenergy.2011.02.029 [46] C. Zhou, Experimental and kinetic modelling study of H2S oxidation, Proc. Combust. Inst. 34 (1) (2013) 625-632.Doi: 10.1016/j.proci.2012.05.083 [47] K. Sendt, Chemical kinetic modeling of the H/S system: H2S thermolysis and H2 sulfidation, Proc. Combust. Inst. 29 (2) (2002) 2439-2446.Doi: 10.1016/S1540-7489(02)80297-8 [48] T.Y. Cong,,, A detailed reaction mechanism for hydrogen production via hydrogen sulphide (H2S) thermolysis and oxidation, Int. J. Hydrog. Energy 41 (16) (2016) 6662-6675.Doi: 10.1016/j.ijhydene.2016.03.053 [49] C. Wang, G. Zhang, Z. Wang, Q.S. Li, Y. Zhang, Direct ab initio dynamics study of the hydrogen abstraction reaction: H2S+O→HS+OH, J. Mol. Struct. THEOCHEM 731 (1-3) (2005) 187-192.Doi: 10.1016/j.theochem.2005.02.075 [50] A. Goumri, D. Laakso, J.D.R. Rocha, C.E. Smith, P. Marshall, Computational studies of the potential energy surface for O(3P)+H2S: characterization of transition states and the enthalpy of formation of HSO and HOS, J. Chem. Phys. 102 (1) (1995) 161-169.Doi: 10.1063/1.469387 [51] B.A. Ellingson, D.G. Truhlar, Explanation of the unusual temperature dependence of the atmospherically important OH + H2S → H2O + HS reaction and prediction of the rate constant at combustion temperatures, J. Am. Chem. Soc. 129 (42) (2007) 12765-12771.Doi: 10.1021/ja072538b [52] Y.F. Xing, Large eddy simulation of a turbulent non-premixed flame based on the flamelet-generated manifolds approach and a reduced mechanism verification, Aerosp. Sci. Technol. 105 (2020) 105952.Doi: 10.1016/j.ast.2020.105952 [53] M. Abián, CS2 and COS conversion under different combustion conditions, Combust. Flame 162 (5) (2015) 2119-2127.Doi: 10.1016/j.combustflame.2015.01.010 [54] J. Berner-Cambot, C. Vovelle, R. Delbourgo, Flame structures of H2S—air diffusion flames, Symp. Int. Combust. 18 (1) (1981) 777-783.Doi: 10.1016/s0082-0784(81)80081-1 [55] N.O. Guldal,,, New catalysts for hydrogen production from H2S: Preliminary results, Int. J. Hydrog. Energy 40 (24) (2015) 7452-7458.Doi: 10.1016/j.ijhydene.2015.02.107 [56] S. Ibrahim, A. Al Shoaibi, A.K. Gupta, Toluene destruction in thermal stage of Claus reactor with oxygen enriched air, Appl. Energy 115 (2014) 1-8.Doi: 10.1016/j.apenergy.2013.10.060 [57] S. Ibrahim, R.K. Rahman, A. Raj, Effects of H2O in the feed of sulfur recovery unit on sulfur production and aromatics emission from Claus furnace, Ind. Eng. Chem. Res. 56 (41) (2017) 11713-11725.Doi: 10.1021/acs.iecr.7b02553 [58] Y. Murakami, M. Kosugi, K.J. Susa, T. Kobayashi, N. Fujii, Kinetics and mechanism for the oxidation of CS2 and COS at high temperature, Bull. Chem. Soc. Jpn. 74 (7) (2001) 1233-1240.Doi: 10.1246/bcsj.74.1233 [59] P. Glarborg, B. Halaburt, P. Marshall, A. Guillory, J. Troe, M. Thellefsen, K. Christensen, Oxidation of reduced sulfur species: carbon disulfide, J. Phys. Chem. A 118 (34) (2014) 6798-6809.https://pubmed.ncbi.nlm.nih.gov/25116264/ [60] Y. Li, X.L. Yu, H.J. Li, Q.H. Guo, Z.H. Dai, G.S. Yu, F.C. Wang, Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production, Appl. Energy 208 (2017) 905-919.Doi: 10.1016/j.apenergy.2017.09.059 |