[1] Z.W. Guo, J.H. Huang, X.L. Dong, Y.Y. Xia, L. Yan, Z. Wang, Y.G. Wang, An organic/inorganic electrode-based hydronium-ion battery, Nat. Commun. 11 (2020) 959. [2] Y.B. Liu, Z.H. Si, C. Ren, H.Z. Wu, P. Zhan, Y.Q. Peng and P.Y. Qin, Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal, Chin. J. Chem. Eng. (2022) [3] A.P. Zhu, H.S. Wang, S.S. Sun and C.Q. Zhang, The synthesis and antistatic, anticorrosive properties of polyaniline composite coating, Prog. Org. Coat. 122 (2018) 270-279. [4] C.l. Yang, H.g. Wei, L.T. Guan, J. Guo, Y.R. Wang, X.R. Yan, X. Zhang, S.Y. Wei, Z.H. Guo, Polymer nanocomposites for energy storage, energy saving, and anticorrosion, J. Mater. Chem. A 3 (29) (2015) 14929-14941. [5] M.J. Shi, R.Y. Wang, L.Y. Li, N.T. Chen, P. Xiao, C. Yan, X.B. Yan, Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage, Adv. Funct. Mater (2022) 2209777. [6] Q.C. Yu, Z.H. Xue, M.C. Li, P.M. Qiu, C.G. Li, S.P. Wang, J.X. Yu, H. Nara, J. Na, Y. Yamauchi, Electrochemical activity of nitrogen-containing groups in organic electrode materials and related improvement strategies, Adv. Energy Mater. 11 (7) (2021) 2002523. [7] S. Pourhashem, F. Saba, J. Duan, A. Rashidi, F. Guan, E.G. Nezhad, B. Hou, Polymer/inorganic nanocomposite coatings with superior corrosion protection performance: A review, J. Ind. Eng. Chem. 88 (2020) 29-57. [8] C.Y. Li, G. Yu, Controllable synthesis and performance modulation of 2D covalent-organic frameworks, Small, 17 (47) (2021) 2100918. [9] R.Y. Wang, M.J. Shi, L.Y. Li, Y. Zhao, L.P. Zhao, C. Yan, In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries, Chem. Eng. J. 451 (2023) 138652. [10] D.N. Wang, W.H. Hu, B.J. Reinhart, X.Y. Zhang, J.E. Huang, Tuning the charge transport property and photocatalytic activity of anthracene-based 1D π-d conjugated coordination polymers by interlayer stacking, ACS Appl. Mater. Interfaces, 14 (37) (2022) 42171-42177. [11] Y.C. Wu, Y. Zhang, Y. Chen, H. Tang, M. Tang, S.F. Xu, K. Fan, C.Y. Zhang, J. Ma, C.L. Wang, W.P. Hu, Heterochelation boosts sodium storage in π-d conjugated coordination polymers, Energy Environ. Sci. 14 (12) (2021) 6514-6525. [12] Y. Chen, Q. Zhu, K. Fan, Y.M. Gu, M.X. Sun, Z.Y. Li, C.Y. Zhang, Y.C. Wu, Q. Wang, S.F. Xu, J. Ma, C.L. Wang, W.P. Hu, Successive storage of cations and anions by ligands of π-d-conjugated coordination polymers enabling robust sodium-ion batteries, Angew. Chem. Int. Ed. 60 (34) (2021) 18769-18776. [13] L.S. Xie, G. Skorupskii, M. Dincă, Electrically conductive metal-organic frameworks, Chem. Rev., 120 (16) (2020) 8536-8580. [14] Y. Chen, M. Tang, Y.C. Wu, X.Z. Su, X. Li, S.F. Xu, S.M. Zhuo, J. Ma, D.Q. Yuan, C.L. Wang, W.P. Hu, A one-dimensional π-d conjugated coordination polymer for sodium storage with catalytic activity in negishi coupling, Angew. Chem. Int. Ed. 58 (41) (2019) 14731-14739. [15] S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka, U.S. Schubert, Polymer-based organic batteries, Chem. Rev. 116 (16) (2016) 9438-9484. [16] R. Schroot, M. Jäger and U.S. Schubert, Synthetic approaches towards structurally-defined electrochemically and (photo)redox-active polymer architectures, Chem. Soc. Rev. 46 (10) (2017) 2754-2798. [17] B. Wang, J.M. Li, M.H Ye, Y.F. Zhang, Y.C. Tang, X.H. Hu, J. He, C.C. Li, Dual-redox sites guarantee high-capacity sodium storage in two-dimension conjugated metal-organic frameworks, Adv. Funct. Mater. 32 (22) (2022) 2112072. [18] J. Kim, J.H. Kim and K. Ariga, Redox-active polymers for energy storage nanoarchitectonics, Joule 1 (4) (2017) 739-768. [19] S.K. Simotwo, C. DelRe, V. Kalra, Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers, ACS Appl. Mater. Interfaces, 8 (33) (2016) 21261-21269. [20] L.H. Wang, C.J. Pan, Z.M. Chen, W.Q. Zhou, C.M. Gao, L. Wang, Enhanced thermoelectric performance of conjugated polymer/single-walled carbon nanotube composites with strong stacking, ACS Appl. Energy Mater. 1 (9) (2018) 5075-5082. [21] K. Li, J. Yu, Z.J Si, B. Gao, H.G. Wang and Y.H. Wang, One-dimensional π-d conjugated coordination polymer with double redox-active centers for all-organic symmetric lithium-ion batteries, Chem. Eng. J. 450 (2022) 138052. [22] Y.X. Ni, L. Lin, Y.X. Shang, L. Luo, L.B. Wang, Y. Lu, Y.X. Li, Z.H. Yan, K. Zhang, F.Y. Cheng, J. Chen, Regulating electrocatalytic oxygen reduction activity of a metal coordination polymer via d-π conjugation, Angew. Chem. Int. Ed. 60 (31) (2021) 16937-16941. [23] Y.Q. Du, R.B. Liang, J.X. Wu, Y.Y. Ye, S.Y. Chen, J. Yuan, J.W. Chen, P. Xiao, High-performance quasi-solid-state flexible supercapacitors based on a flower-like NiCo metal-organic framework, RSC Adv. 12 (10) (2022) 5910-5918. [24] S. Aryanejad, N.V. Motlagh, Investigation of the carbon dioxide adsorption behavior and the heterogeneous catalytic efficiency of a novel Ni-MOF with nitrogen-rich channels, RSC Adv. 10 (50) (2020) 29772-29779. [25] J. Park, A.C. Hinckley, Z.H. Huang, D.W. Feng, A.A. Yakovenko, M. Lee, S.C. Chen, X.D. Zou, Z.N. Bao, Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal-organic framework, J. Am. Chem. Soc. 140 (44) (2018) 14533-14537. [26] L.B. Wang, Y.X. Ni, X.S. Hou, L. Chen, F.J. Li, J. Chen, A two-dimensional metal-organic polymer enabled by robust nickel-nitrogen and hydrogen bonds for exceptional sodium-ion storage, Angew. Chem. Int. Ed. 59 (49) (2020) 22126-22131. [27] M.J. Shi, H.T.Zhu, C. Yang, J. Xu, C. Yan, Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors, Chin. J. Chem. Eng. 47 (2022), 1-10. [28] S.L. Wang, S. Ma, Facile fabrication of Ni0.85Se nanowires by the composite alkali salt method as a novel cathode material for asymmetric supercapacitors, Dalton Trans., 48 (12) (2019) 3906-3913. [29] S.H. Yang, Y.Y. Liu, Y.F. Hao, X.P. Yang, W.A. Goddard III, X.L. Zhang, B.Q. Cao, Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes, Adv. Sci. 5 (4) (2018) 1700659. [30] D.K. Kulurumotlakatla, A.K. Yedluri and H.J. Kim, Hierarchical NiCo2S4 nanostructure as highly efficient electrode material for high-performance supercapacitor applications, J. Energy Storage 31 (2020) 101619. [31] P. Himasree, I.K. Durga, T.N.V. Krishna, S.S. Rao, C.V.V. Muralee Gopi, S. Revathi, K. Prabakar and H.J. Kim, One-step hydrothermal synthesis of CuS@MnS on Ni foam for high performance supercapacitor electrode material, Electrochim. Acta 305 (2019) 467-473. [32] H. Peng, J.Z. Zhou, K.J. Sun, G.F. Ma, Z.G. Zhang, E. Feng, Z.Q. Lei, High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet, ACS Sustain. Chem. Eng. 5 (7) (2017) 5951-5963. [33] C.S. Dai, P.Y. Chien, J.Y. Lin, S.W. Chou, W.K. Wu, P.H. Li, K.Y. Wu, T.W. Lin, Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 5 (22) (2013) 12168-12174. [34] F.F. Zhu, W.J. Liu, Y. Liu, W.D. Shi, Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications, Chem. Eng. J. 383 (2020) 123150. [35] S. Vijayakumar, S. Nagamuthu, K.S. Ryu, CuCo2O4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications, Electrochim. Acta 238 (2017) 99-106. [36] G. Zhao, Y.M. Chen, P.X. Sun, S.H. Hao, X.K. Wang, G.M. Qu, Y.P. Xing, X.J. Xu, Design of nickel cobalt molybdate regulated by boronizing for high-performance supercapacitor applications, Nanoscale 12 (34) (2020) 17849-17857. [37] H.M. Abd El-Lateef, M.M. Khalaf, K. Shalabi, A.A. Abdelhamid, Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations, Chin. J. Chem. Eng., (2022). [38] A.S. Fouda, M.A. Ismail, R.M. Abou-shahba, W.A. Husien, E.S. El-Habab, A.S. Abousalem, Experimental and computational chemical studies on the cationic furanylnicotinamidines as novel corrosion inhibitors in aqueous solutions, Chin. J. Chem. Eng. 28 (2) (2020) 477-491. [39] M. Cai, H. Yan, Y.T. Li, W. Li, H. Li, X.Q. Fan, M.H. Zhu, Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application, Chem. Eng. J. 410 (2021) 128310. [40] M. Talebian, K. Raeissi, M. Atapour, B.M. Fernández-Pérez, A. Betancor-Abreu, I. Llorente, S. Fajardo, Z. Salarvand, S. Meghdadi, M. Amirnasr, R.M. Souto, Pitting corrosion inhibition of 304 stainless steel in NaCl solution by three newly synthesized carboxylic Schiff bases, Corros. Sci. 160 (2019) 108130. [41] S.T. Yue, W.W. Ji, C.Y. Liu, J.J. Xu, H. Huang, Synergistic effect of homogeneously dispersed PANI-TiN nanocomposites towards long-term anticorrosive performance of epoxy coatings, Prog. Org. Coat. 130 (2019) 158-167. [42] H.W. Huang, X.F. Huang, Y.H. Xie, Y.Q. Tian, X. Jiang, X.Y. Zhang, Fabrication of h-BN-rGO@PDA nanohybrids for composite coatings with enhanced anticorrosion performance, Prog. Org. Coat., 130 (2019) 124-131. [43] S.C. Yuan, Y. Sun, C.S. Yang, Y. Zhang, C. Cong, Y. Yuan, D. Lin, L.C. Pei, Y. Zhu, H.Y. Wang, A novel dual-functional epoxy-based composite coating with exceptional anti-corrosion and enhanced hydrogen gas barrier properties, Chem. Eng. J. 449 (2022) 137876. [44] Y.J. Qiang, S.T. Zhang, H.C. Zhao, B.C. Tan and L.P. Wang, Enhanced anticorrosion performance of copper by novel N-doped carbon dots, Corros. Sci. 161 (2019) 108193. [45] L. Cheng, H. Wu, J. Li, H.C. Zhao and L.P. Wang, Polydopamine modified ultrathin hydroxyapatite nanosheets for anti-corrosion reinforcement in polymeric coatings, Corros. Sci. 178 (2021) 109064. [46] J.F. Chen, W.J. Zhao, Silk fibroin-Ti3C2Tx hybrid nanofiller enhance corrosion protection for waterborne epoxy coatings under deep sea environment, Chem. Eng. J. 423 (2021) 130195. [47] X.L. He, J.X. Wu, S.H. Li, Y. Chen, L. Zhang, X.X. Sheng, In situ growth of aminated silica on MXene nanosheets: A novel 0D/2D hybrid structure for multifunctional waterborne epoxy composite coatings, Prog. Org. Coat. 171 (2022) 107042. [48] Z.J. Li, Y. He, S.M. Yan, H.J. Li, J. Chen, C. Zhang, C.H. Li, Y. Zhao, Y. Fan, C.H. Guo, A novel silk fibroin-graphene oxide hybrid for reinforcing corrosion protection performance of waterborne epoxy coating, Colloids Surf. A Physicochem. Eng. Aspects 634 (2022) 127959. [49] G.W. Tang, X.Y. Hou, Y. Wang, Z.S. Yan, T.T. Ren, L.R. Ma, X. Huang, C.P. Wang, Hexagonal boron nitride/polyaniline nanocomposites for anticorrosive waterborne epoxy coatings, ACS Appl. Nano Mater. 5 (1) (2022) 361-372. [50] A.X. Li and A.P. Zhu, Preparation of Fe3O4/PANI nanocomposite and its metal anticorrosive activity, Prog. Org. Coat. 161 (2021) 106477. [51] Q.X. Yue, L.F. Wu, J. Lv, A.M. Wang, R. Ding, Y.Y. Wang, L. Yue, W. Gao, X.I. Li, X.Y. Li, Z. Cao, Y.N. Wang, Q.Y. Gao, P. Han, H.B. Yu, X.D. Zhao, T.J. Gui, X. Wang, Study on anti-corrosion performance and mechanism of epoxy coatings based on basalt flake loaded aniline trimer, Colloid Interface Sci. Commun. 45 (2021) 100505. [52] Y.Q. Ma, H.C. Wang, S.H. Li, Y. Chen, L. Zhang, X.X. Sheng, An eco-friendly and pH response cerium-based melamine phytate (PM) nanosheets with active and passive anticorrosion ability in water-borne epoxy coating, Appl. Surf. Sci. 597 (2022) 153726. [53] Y.M. Wu, F.W. Jiang, Y.J. Qiang and W.J. Zhao, Synthesizing a novel fluorinated reduced graphene oxide-CeO2 hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coatings, Carbon 176 (2021) 39-51. [54] C.H. Li, Y. He, Z.J. Li, H.J. Li, Y. Zhao, Graphene loaded with corrosion inhibitor cerium (iii) cation for enhancing corrosion resistance of waterborne epoxy coating: Physical barrier and self-healing, Colloids Surf. A Physicochem. Eng. Aspects 635 (2022) 128048. [55] Y.W. Ye, D.W. Zhang, T. Liu, Z.Y. Liu, J.B. Pu, W. Liu, H.C. Zhao, X.G. Li, L.P. Wang, Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene, Carbon 142 (2019) 164-176. [56] F.W. Jiang, W.J. Zhao, Y.M. Wu, Y.H. Wu, G. Liu, J.D. Dong, K.H. Zhou, A polyethyleneimine-grafted graphene oxide hybrid nanomaterial: Synthesis and anti-corrosion applications, Appl. Surf. Sci. 479 (2019) 963-973. |