[1] F.C. Wang, G.S. Yu, H.F. Liu, W.F. Li, Q.H. Guo, J.L. Xu, Y. Gong, H. Zhao, H.F. Lu, Z.J. Shen, Opposed multi-burner gasification technology: Recent process of fundamental research and industrial application, Chin. J. Chem. Eng. 35(2021) 124-142. [2] J.L. Xu, Z.H. Dai, H.F. Liu, L.Y. Guo, F. Sun, Modeling of multiphase reaction and slag flow in single-burner coal water slurry gasifier, Chem. Eng. Sci. 162(2017) 41-52. [3] P.F. Zhang, C.Z. Xu, J.P. Kuang, S.G. Liu, Z.W. Xia, K. Wu, Y.Q. Huang, Investigation on the ash deposition of a radiant syngas cooler using critical velocity model, Energy Rep. 6(2020) 112-126. [4] M. Husmann, T. Kienberger, C. Zuber, W. de Jong, C. Hochenauer, Application of CaO sorbent for the implementation and characterization of an in situ desulfurization steam-blown bubbling fluidized-bed test rig for biomass gasification, Ind. Eng. Chem. Res. 54(21) (2015) 5759-5768. [5] J.J. Ni, G.S. Yu, Q.H. Guo, Z.H. Dai, F.C. Wang, Modeling and comparison of different syngas cooling types for entrained-flow gasifier, Chem. Eng. Sci. 66(3) (2011) 448-459. [6] J.Y. Qiu, Q.H. Guo, J.L. Xu, Y. Gong, G.S. Yu, Numerical study on heat transfer and thermal stress of the upper cone membrane wall in radiant syngas cooler, Appl. Therm. Eng. 169(2020) 114845. [7] C. Higman, S. Tam, Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels, Chem. Rev. 114(3) (2014) 1673-1708. [8] G.S. Yu, J.J. Ni, Q.F. Liang, Q.H. Guo, Z.J. Zhou, Modeling of multiphase flow and heat transfer in radiant syngas cooler of an entrained-flow coal gasification, Ind. Eng. Chem. Res. 48(22) (2009) 10094-10103. [9] L. Wang, J.Y. Qiu, Q. He, Q.H. Guo, J.L. Xu, L. Ding, G.S. Yu, Performance evolution of industrial radiant syngas cooler with radiation screens using numerical simulation, Can. J. Chem. Eng. 101(1) (2023) 492-503. [10] X.B. Li, Y. Gong, Z.J. Zhou, Z.H. Dai, G.S. Yu, Simulation of radiant syngas coolers and comparison with various arrangements of the entrained-flow gasifier, Chem. Eng. Technol. 39(8) (2016) 1457-1467. [11] L. Wang, J.L. Xu, J.T. Wei, Q.H. Guo, Y. Gong, G.S. Yu, Numerical simulation of radiant syngas cooler with different connection to entrained-flow gasifier, Appl. Therm. Eng. 201(2022) 117804. [12] J.Y. Qiu, Q.H. Guo, J.T. Wei, J.L. Xu, Y. Gong, G.S. Yu, Numerical simulation of heat transfer and a forging plate structure in a radiant syngas cooler with radiation screens, Ind. Eng. Chem. Res. 59(37) (2020) 16483-16491. [13] W.W. Xuan, Y.Q. Zhang, J.S. Zhang, Chemistry variation of slag and the layered characteristics of deposits in an industrialized entrained-flow gasifier system with radiant syngas cooler, Energy 260(2022) 124942. [14] Y. Xiong, Y.H. Liu, Y. Guan, H.Z. Liu, S.J. Geng, Numerical study on dynamic ash deposition and heat transfer characteristics of radiant syngas cooler, Energy 261(2022) 125252. [15] B. Wang, J.Y. Qiu, Q.H. Guo, Y. Gong, J.L. Xu, G.S. Yu, Numerical simulations of solidification characteristics of molten slag droplets in radiant syngas coolers for entrained-flow coal gasification, ACS Omega 6(31) (2021) 20388-20397. [16] T.F. Smith, Z.F. Shen, J.N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transf. 104(4) (1982) 602-608. [17] C.G. Yin, L.C.R. Johansen, L.A. Rosendahl, S.K. Kaer, New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy-fuel combustion: Derivation, validation, and implementation, Energy Fuels 24(12) (2010) 6275-6282. [18] R. Johansson, K. Andersson, B. Leckner, H. Thunman, Models for gaseous radiative heat transfer applied to oxy-fuel conditions in boilers, Int. J. Heat Mass Transf. 53(1-3) (2010) 220-230. [19] T. Kangwanpongpan, F.H.R. Franca, R. Correa da Silva, P.S. Schneider, H.J. Krautz, New correlations for the weighted-sum-of-gray-gases model in oxy-fuel conditions based on HITEMP 2010 database, Int. J. Heat Mass Transf. 55(25-26) (2012) 7419-7433. [20] X.F. Wu, W.D. Fan, S.L. Liu, J. Chen, H. Guo, Z. Liu, A new WSGGM considering CO in oxy-fuel combustion: A theoretical calculation and numerical simulation application, Combust. Flame 227(2021) 443-455. [21] K. Uebel, U. Guenther, F. Hannemann, U. Schiffers, H. Yilmaz, B. Meyer, Development and engineering of a synthetic gas cooler concept integrated in a Siemens gasifier design, Fuel 116(2014) 879-888. [22] Y. Zhang, K. Yue, X.R. Zhang, X.X. Zhang, Deposition characteristics of particles in backward-facing step flow and a radiant syngas cooler, Case Stud. Therm. Eng. 43(2023) 102799. [23] J.L. Xu, H. Zhao, Z.H. Dai, H.F. Liu, F.C. Wang, Numerical simulation of Opposed Multi-Burner gasifier under different coal loading ratio, Fuel 174(2016) 97-106. [24] T. Matamba, S. Iglauer, A. Keshavarz, A progress insight of the formation of hydrogen rich syngas from coal gasification, J. Energy Inst. 105(2022) 81-102. [25] J.X. An, X.J. Luo, Numerical simulation of ash erosion in the selective catalytic reduction catalyst of power plant boiler, Energy Rep. 8(2022) 1313-1321. [26] J.J. Ni, G.S. Yu, Q.H. Guo, Q.F. Liang, Z.J. Zhou, Experimental and numerical study of the flow field and temperature field for a large-scale radiant syngas cooler, Ind. Eng. Chem. Res. 49(9) (2010) 4452-4461. [27] Y.X. Wu, J.S. Zhang, P.J. Smith, H. Zhang, C. Reid, J.F. Lv, G.X. Yue, Three-dimensional simulation for an entrained flow coal slurry gasifier, Energy Fuels 24(2) (2010) 1156-1163. [28] C. Han, Y.M. Situ, B. Zhu, J.L. Xu, X.L. Guo, H.F. Liu, Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater, CIESC J. 74(8) (2023) 3266-3278, in Chinese. [29] B. Wang, J.Y. Qiu, Q.H. Guo, X. Luo, Y. Gong, J.L. Xu, G.S. Yu, Numerical study on the effects of homogeneous reactions on the composition distributions of syngas in radiant syngas cooler, Appl. Therm. Eng. 210(2022) 118307. [30] G. Krishnamoorthy, A computationally efficient P1 radiation model for modern combustion systems utilizing pre-conditioned conjugate gradient methods, Appl. Therm. Eng. 119(2017) 197-206. [31] H.Q. Chu, F. Ren, Y. Feng, M.Y. Gu, S. Zheng, A comprehensive evaluation of the non gray gas thermal radiation using the line-by-line model in one- and two-dimensional enclosures, Appl. Therm. Eng. 124(2017) 362-370. [32] C.B. Qi, S. Zheng, H.C. Zhou, Calculations of thermal radiation transfer of C2H2 and C2H4 together with H2O, CO2, and CO in a one-dimensional enclosure using LBL and SNB models, J. Quant. Spectrosc. Radiat. Transf. 197(2017) 45-50. [33] Y.J. Sun, S. Zheng, F.S. Liu, Non-gray gas and soot radiation heat transfer to a spherical fuel particle in combustion scenarios, Int. Commun. Heat Mass Transf. 128(2021) 105640. [34] L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf. 111(15) (2010) 2139-2150. [35] M.H. Bordbar, G. Wecel, T. Hyppanen, A line by line based weighted sum of gray gases model for inhomogeneous CO2-H2O mixture in oxy-fired combustion, Combust. Flame 161(9) (2014) 2435-2445. [36] A.H. Al-Abbas, J. Naser, D. Dodds, CFD modelling of air-fired and oxy-fuel combustion of lignite in a 100 kW furnace, Fuel 90(5) (2011) 1778-1795. [37] M.J. Yu, S.W. Baek, J.H. Park, An extension of the weighted sum of gray gases non-gray gas radiation model to a two phase mixture of non-gray gas with particles, Int. J. Heat Mass Transf. 43(10) (2000) 1699-1713. [38] R.I. Backreedy, L.M. Fletcher, L. Ma, M. Pourkashanian, A. Williams, Modelling pulverised coal combustion using a detailed coal combustion model, Combust. Sci. Technol. 178(4) (2006) 763-787. [39] F.C. Lockwood, S.A. Rizvi, N.G. Shah, Comparative predictive experience of coal firing, Proc. Inst. Mech. Eng. C 200(2) (1986) 79-87. [40] L. Ma, M. Gharebaghi, R. Porter, M. Pourkashanian, J.M. Jones, A. Williams, Modelling methods for co-fired pulverised fuel furnaces, Fuel 88(12) (2009) 2448-2454. [41] K.C. Mills, J.M. Rhine, The measurement and estimation of the physical properties of slags formed during coal gasification: 2. Properties relevant to heat transfer, Fuel 68(7) (1989) 904-910. [42] C.G. Yin, On gas and particle radiation in pulverized fuel combustion furnaces, Appl. Energy 157(2015) 554-561. [43] A.G. Konstandopoulos, Particle sticking/rebound criteria at oblique impact, J. Aerosol Sci. 37(3) (2006) 292-305. [44] B. Ding, X. Zhu, H. Wang, X.Y. He, Y. Tan, Numerical investigation on phase change cooling and crystallization of a molten blast furnace slag droplet, Int. J. Heat Mass Transf. 118(2018) 471-479. |