[1] S. Ebnesajjad, Effect of Chemicals on Plastics. Chemical Resistance of Engineering Thermoplastics. Amsterdam: Elsevier, 2016. [2] M.G.A. Vieira, M.A. da Silva, L.O. dos Santos, M.M. Beppu, Natural-based plasticizers and biopolymer films: a review, Eur. Polym. J. 47 (3) (2011) 254-263. [3] P.Y. Jia, L.H. Hu, G.D. Feng, C.Y. Bo, M. Zhang, Y.H. Zhou, PVC materials without migration obtained by chemical modification of azide-functionalized PVC and triethyl citrate plasticizer, Mater. Chem. Phys. 190 (2017) 25-30. [4] J.Y. Liu, R. Yuan, Q. Sang, L. Dang, L. Gao, B.H. Xu, S.A. Xu, Effect of acetylated citrate plasticizer on mechanical properties of poly(vinyl chloride), Mater. Chem. Phys. 295 (2023) 127068. [5] W.F. Bohorquez, O.M. Osorio-Pascuas, M.A. Santaella, A. Orjuela, Homogeneous and heterogeneous catalytic kinetics in the production of triethyl citrate, Ind. Eng. Chem. Res. 59 (43) (2020) 19203-19211. [6] O.M. Osorio-Pascuas, M.A. Santaella, G. Rodriguez, A. Orjuela, Esterification kinetics of tributyl citrate production using homogeneous and heterogeneous catalysts, Ind. Eng. Chem. Res. 54 (50) (2015) 12534-12542. [7] Z. Khan, F. Javed, Z. Shamair, A. Hafeez, T. Fazal, A. Aslam, W.B. Zimmerman, F. Rehman, Current developments in esterification reaction: a review on process and parameters, J. Ind. Eng. Chem. 103 (2021) 80-101. [8] W.Z. Guo, H. Lu, X.K. Li, G.P. Cao, Tungsten-promoted titania as solid acid for catalytic hydrolysis of waste bottle PET in supercritical CO2, RSC Adv. 6 (49) (2016) 43171-43184. [9] W.Z. Guo, T. Kortenbach, W. Qi, E. Hensen, H. Jan Heeres, J. Yue, Selective tandem catalysis for the synthesis of 5-hydroxymethylfurfural from glucose over in situ phosphated titania catalysts: insights into structure, bi-functionality and performance in flow microreactors, Appl. Catal. B Environ. 301 (2022) 120800. [10] W.Z. Guo, E.J.M. Hensen, W. Qi, H.J. Heeres, J. Yue, Titanium phosphate grafted on mesoporous SBA-15 silica as a solid acid catalyst for the synthesis of 5-hydroxymethylfurfural from glucose, ACS Sustainable Chem. Eng. 10 (31) (2022) 10157-10168. [11] W.Z. Guo, H.C. Bruining, H.J. Heeres, J. Yue, Insights into the reaction network and kinetics of xylose conversion over combined Lewis/Broensted acid catalysts in a flow microreactor, Green Chem. 25 (15) (2023) 5878-5898. [12] W.Z. Guo, Z. Zhang, J. Hacking, H.J. Heeres, J. Yue, Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: experimental study and kinetic modelling, Chem. Eng. J. 409 (2021) 128182. [13] W.Z. Guo, H.J. Heeres, J. Yue, Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor, Chem. Eng. J. 381 (2020) 122754. [14] W.Z. Guo, H.C. Bruining, H.J. Heeres, J. Yue, Efficient synthesis of furfural from xylose over HCl catalyst in slug flow microreactors promoted by NaCl addition, AlChE. J. 68 (5) (2022) e17606. [15] A.K. Kolah, N.S. Asthana, D.T. Vu, C.T. Lira, D.J. Miller, Reaction kinetics of the catalytic esterification of citric acid with ethanol, Ind. Eng. Chem. Res. 46 (10) (2007) 3180-3187. [16] A.K. Kolah, N.S. Asthana, D.T. Vu, C.T. Lira, D.J. Miller, Triethyl citrate synthesis by reactive distillation, Ind. Eng. Chem. Res. 47 (4) (2008) 1017-1025. [17] H.W. Li, S.Q. Zhao, W.L. Zhang, H. Du, X.L. Yang, Y.H. Peng, D.Z. Han, B. Wang, Z. Li, Efficient esterification over hierarchical Zr-Beta zeolite synthesized via liquid-state ion-exchange strategy, Fuel 342 (2023) 127786. [18] A.Q. Yuan, H. Liang, Z.W. Huang, D.P. Wei, Synthesis and kinetics of tributyl citrate using aluminum dihydrogen tripolyphosphate supported on modified activated carbon as catalyst, ScienceAsia 47 (2) (2021) 187. [19] Z.F. Zheng, J.M. Xu, J.C. Jiang, Y.J. Lu, Y.B. Huang, Synthesis of tributyl citrate using SO42-/Zr-MCM-41 as catalyst, Bull. Chem. Soc. Eth. 25 (1) (2011) 147-150. [20] Y. Lu, S.X. Xu, F. Zhao, Synthesis of tributyl citrate using preyssler acid as catalyst,AIP Conference Proceedings. Uttar Pradesh, India. 2017. [21] J. Xu, J. Jiang, L. Wei, Y. Gao, Synthesis of tributyl citrate using solid acid as a catalyst, Chem. Eng. Commun. 198 (2011) 474-482. [22] S.K. Das, S.A. El-Safty, Development of mesoscopically assembled sulfated zirconia nanoparticles as promising heterogeneous and recyclable biodiesel catalysts, ChemCatChem 5 (10) (2013) 3050-3059. [23] K. Saravanan, B. Tyagi, H.C. Bajaj, Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol, Appl. Catal. B Environ. 192 (2016) 161-170. [24] L.F. Isernia, Study of the influence of physical-chemical properties of steamed H-MOR zeolites in the mechanism of adsorption of fatty acids and their esterification, Microporous Mesoporous Mater. 200 (2014) 19-26. [25] Y. Zhou, G.J. Chen, Z.Y. Long, J. Wang, Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations, RSC Adv. 4 (79) (2014) 42092-42113. [26] M.A. Hanif, S. Nisar, U. Rashid, Supported solid and heteropoly acid catalysts for production of biodiesel, Catal. Rev. 59 (2) (2017) 165-188. [27] X.J. Kong, S.X. Wu, L.Y. Liu, S. Li, J.H. Liu, Continuous synthesis of ethyl levulinate over Cerium exchanged phosphotungstic acid anchored on commercially silica gel pellets catalyst, Mol. Catal. 439 (2017) 180-185. [28] C. Travers, N. Essayem, M. Delage, S. Quelen, Heteropolyanions based catalysts for paraffins isomerization, Catal. Today 65 (2-4) (2001) 355-361. [29] H.P. Winoto, Z. Ali Fikri, J.M. Ha, Y.K. Park, H. Lee, D.J. Suh, J. Jae, Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to γ-valerolactone, Appl. Catal. B Environ. 241 (2019) 588-597. [30] L. Frattini, M.A. Isaacs, C.M.A. Parlett, K. Wilson, G. Kyriakou, A.F. Lee, Support enhanced α-pinene isomerization over HPW/SBA-15, Appl. Catal. B Environ. 200 (2017) 10-18. [31] K. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara, S. Yamanaka, Water-tolerant, highly active solid acid catalysts composed of the keggin-type polyoxometalate H(3)PW(12)O(40) immobilized in hydrophobic nanospaces of organomodified mesoporous silica, Angew. Chem. Int. Ed Engl. 46 (40) (2007) 7625-7628. [32] Q.R. Zeng, S.Y. Guo, Y.B. Sun, Z.J. Li, W. Feng, Protonation-induced enhanced optical-light photochromic properties of an inorganic-organic phosphomolybdic acid/polyaniline hybrid thin film, Nanomaterials 10 (9) (2020) 1839. [33] M. Hasik, A. Pron, J. Pozniczek, A. Bielanski, Z. Piwowarska, K. Kruczala, R. Dziembaj, Physicochemical and catalytic properties of ployaniline protonated with 12-molybdophosphoric acid, J. Chem. Soc., Faraday Trans. 90 (14) (1994) 2099-2106. [34] N. Mizuno, S. Uchida, K. Kamata, R. Ishimoto, S. Nojima, K. Yonehara, Y. Sumida, A flexible nonporous heterogeneous catalyst for size-selective oxidation through a bottom-up approach, Angew. Chem. Int. Ed Engl. 49 (51) (2010) 9972-9976. [35] L. Leclercq, A. Mouret, A. Proust, V. Schmitt, P. Bauduin, J.M. Aubry, V. Nardello-Rataj, Pickering emulsion stabilized by catalytic polyoxometalate nanoparticles: a new effective medium for oxidation reactions, Chemistry 18 (45) (2012) 14352-14358. [36] A. Popa, V. Sasca, O. Verdes, C. Ianasi, R. Banica, Heteropolyacids anchored on amino-functionalized MCM-41 and SBA-15 and its application to the ethanol conversion reaction, J. Therm. Anal. Calorim. 127 (1) (2017) 319-334. [37] J. Zhu, W.S. You, Z.M. Zhu, S.Z.G Z. Lan-cui, G.Y.P F.O. Chemistry, C. Engineering, L.N. University, Dalian, R. China P, 12-tungstophosphates immobilized on chemically modified mesoporous silica SBA-15, Chem. Res. Chin. Univ. 21 (3) (2005) 264-267. [38] A. El Rahman S. Khder, H.M.A. Hassan, M.S. El-Shall, Metal-organic frameworks with high tungstophosphoric acid loading as heterogeneous acid catalysts, Appl. Catal. A Gen. 487 (2014) 110-118. [39] F.R. Qiu, X.B. Wang, X.F. Zhang, H.O. Liu, S.Q. Liu, K.L. Yeung, Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds, Chem. Eng. J. 147 (2-3) (2009) 316-322. [40] J. Cheng, H. Guo, X. Yang, Y.X. Mao, L. Qian, Y.X. Zhu, W.J. Yang, Phosphotungstic acid-modified zeolite imidazolate framework (ZIF-67) as an acid-base bifunctional heterogeneous catalyst for biodiesel production from microalgal lipids, Energy Convers. Manag. 232 (2021) 113872. [41] R.G. Acres, A.V. Ellis, J. Alvino, C.E. Lenahan, D.A. Khodakov, G.F. Metha, G.G. Andersson, Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces, J. Phys. Chem. C 116 (10) (2012) 6289-6297. [42] N. Niimura, T. Miyakoshi, Characterization of synthesized lacquer analogue films using X-ray photoelectron spectroscopy, Surf. Interface Anal. 29 (6) (2000) 381-385. [43] J. Dobrzynska, Amine- and thiol-functionalized SBA-15: potential materials for As(V), Cr(VI) and Se(VI) removal from water. Comparative study, J. Water Process. Eng. 40 (2021) 101942. [44] N. Mulik, V. Bokade, Immobilization of HPW on UiO-66-NH2 MOF as efficient catalyst for synthesis of furfuryl ether and alkyl levulinate as biofuel, Mol. Catal. 531 (2022) 112689. [45] A.S. Maria Chong, X.S. Zhao, Functionalization of SBA-15 with APTES and characterization of functionalized materials, J. Phys. Chem. B 107 (46) (2003) 12650-12657. [46] X.M. Zhang, Z.R. Zhang, J.S. Suo, S.B. Li, Catalytic monoepoxidation of butadiene over titanium silicate molecular sieves TS-1, Catal. Lett. 66 (3) (2000) 175-179. [47] Y.M. Fang, H.Q. Hu, Mesoporous TS-1: Nanocasting synthesis with CMK-3 as template and its performance in catalytic oxidation of aromatic thiophene, Catal. Commun. 8 (5) (2007) 817-820. [48] X.L. Sheng, Y.M. Zhou, Y.W. Zhang, M.W. Xue, Y.Z. Duan, Immobilization of 12-tungstophosphoric acid on LaSBA-15 and its catalytic activity for alkylation of o-xylene with styrene, Chem. Eng. J. 179 (2012) 295-301. [49] P. Madhusudhanrao, A. Wolfson, S. Kababya, S. Vega, M. Landau, Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices, J. Catal. 232 (1) (2005) 210-225. [50] C. Li, G. Xiong, J.K. Liu, P.L. Ying, Q. Xin, Z.C. Feng, Identifying framework titanium in TS-1 zeolite by UV resonance Raman spectroscopy, J. Phys. Chem. B 105 (15) (2001) 2993-2997. [51] Q.D. Zhang, Y.S. Tan, G.B. Liu, J.F. Zhang, Y.Z. Han, Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether, Green Chem. 16 (11) (2014) 4708-4715. [52] X.U. Junming, J.C. Jiang, Z.Y. Zuo, J. Li, Synthesis of tributyl citrate using acid ionic liquid as catalyst, Process. Saf. Environ. Prot. 88 (1) (2010) 28-30. [53] S. Wang, L.L. Xu, L.L. Xu, C.C. Tian, Y.Y. Guan, Optimization of process variables in the synthesis of tributyl citrate using a polyvinylpolypyrrolidone-supported Broensted acidic ionic liquid catalyst, Int. J. Polym. Sci. 2018 (2018) 1953563. [54] K.Y. Nandiwale, P. Gogoi, V.V. Bokade, Catalytic upgrading of citric acid to environmental friendly tri-butyl citrate plasticizer over ultra stable phosphonated Y zeolite, Chem. Eng. Res. Des. 98 (2015) 212-219. |