[1] X.F. Wang, X.H. Liang, P. Geng, Q.B. Li, Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts, ACS Catal. 10 (4) (2020) 2395-2412. [2] Y. Bonita, V. Jain, F.Y. Geng, T.P. O'Connell, N.X. Ramos, N. Rai, J.C. Hicks, Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: catalytic consequences of product and pyridine doping, Appl. Catal. B Environ. 277 (2020) 119272. [3] S. Mitchell, R.X. Qin, N.F. Zheng, J. Perez-Ramirez, Nanoscale engineering of catalytic materials for sustainable technologies, Nat. Nanotechnol. 16 (2) (2021) 129-139. [4] T.C. Pu, W.H. Zhang, M.H. Zhu, Engineering heterogeneous catalysis with strong metal-support interactions: characterization, theory and manipulation, Angew. Chem. Int. Ed Engl. 62 (4) (2023) e202212278. [5] S.J. Tauster, S.C. Fung, R.T. Baker, J.A. Horsley, Strong interactions in supported-metal catalysts, Science 211 (4487) (1981) 1121-1125. [6] T.W. van Deelen, C.H. Mejia, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity, Nat. Catal. 2 (11) (2019) 955-970. [7] Y. Lou, J. Xu, Y. Zhang, C. Pan, Y. Dong, Y. Zhu, Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms, Mater. Today Nano 12 (2020) 100093. [8] S.L. Hu, W.X. Li, Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts, Science 374 (6573) (2021) 1360-1365. [9] S. Tauster, Strong metal-support interactions: occurrence among the binary oxides of groups IIA? VB, J. Catal. 55 (1) (1978) 29-35. [10] X.Y. Liu, Y.Q. Ren, M.D. Wang, X.M. Ren, J. Liu, Q.H. Yang, Cooperation of Pt and TiOx in the hydrogenation of nitrobenzothiazole, ACS Catal. 12 (18) (2022) 11369-11379. [11] A.M. Ruppert, T. Paryjczak, Pt/ZrO2/TiO2 catalysts for selective hydrogenation of crotonaldehyde: tuning the SMSI effect for optimum performance, Appl. Catal. Gen. 320 (2007) 80-90. [12] A. Huidobro, A. Sepulveda-Escribano, F. Rodriguez-Reinoso, Vapor-phase hydrogenation of crotonaldehyde on titania-supported Pt and PtSn SMSI catalysts, J. Catal. 212 (1) (2002) 94-103. [13] P. Johar, C.R. McElroy, E.L. Rylott, A.S. Matharu, J.H. Clark, Biologically bound nickel as a sustainable catalyst for the selective hydrogenation of cinnamaldehyde, Appl. Catal. B Environ. 306 (2022) 121105. [14] M. Khan, S. Joshi, V. Ranade, Kinetics of cinnamaldehyde hydrogenation in four phase system, Chem. Eng. J. 377 (2019) 120512. [15] X. Lan, T. Wang, Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review, ACS Catal. 10 (2020) 2764-2790. [16] J.J. Shi, R.F. Nie, P. Chen, Z.Y. Hou, Selective hydrogenation of cinnamaldehyde over reduced graphene oxide supported Pt catalyst, Catal. Commun. 41 (2013) 101-105. [17] K. Liberkova, R. Touroude, Performance of Pt/SnO2 catalyst in the gas phase hydrogenation of crotonaldehyde, J. Mol. Catal. Chem. 180 (1-2) (2002) 221-230. [18] S. Bhogeswararao, D. Srinivas, Intramolecular selective hydrogenation of cinnamaldehyde over CeO2-ZrO2-supported Pt catalysts, J. Catal. 285 (1) (2012) 31-40. [19] H.G. Manyar, B. Yang, H. Daly, H. Moor, S. McMonagle, Y. Tao, G.D. Yadav, A. Goguet, P. Hu, C. Hardacre, Selective hydrogenation of α, β-unsaturated aldehydes and ketones using novel manganese oxide and platinum supported on manganese oxide octahedral molecular sieves as catalysts, ChemCatChem 5 (2) (2013) 506-512. [20] D. Wang, Y.J. Zhu, An effective Pt-Cu/SiO2 catalyst for the selective hydrogenation of cinnamaldehyde, J. Chem. 2018 (2018) 5608243. [21] M. Lashdaf, T. Hatanpaa, A.O.I. Krause, J. Lahtinen, M. Lindblad, M. Tiitta, Deposition of palladium and ruthenium β-diketonates on alumina and silica supports in gas and liquid phase, Appl. Catal. Gen. 241 (1-2) (2003) 51-63. [22] M. Lashdaf, V.V. Nieminen, M. Tiitta, T. Venalainen, H. Osterholm, O. Krause, Role of acidity in hydrogenation of cinnamaldehyde on platinum beta zeolite, Microporous Mesoporous Mater. 75 (1-2) (2004) 149-158. [23] M. Macino, A.J. Barnes, S.M. Althahban, R.Y. Qu, E.K. Gibson, D.J. Morgan, S.J. Freakley, N. Dimitratos, C.J. Kiely, X. Gao, A.M. Beale, D. Bethell, Q. He, M. Sankar, G.J. Hutchings, Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene, Nat. Catal. 2 (10) (2019) 873-881. [24] S.D. Sun, X.M. Wu, Z.W. Huang, H.Z. Shen, H.W. Zhao, G.H. Jing, Engineering stable Pt nanoclusters on defective two-dimensional TiO2 nanosheets by introducing SMSI for efficient ambient formaldehyde oxidation, Chem. Eng. J. 435 (2022) 135035. [25] W.T. Figueiredo, R. Prakash, C.G. Vieira, D.S. Lima, V.E. Carvalho, E.A. Soares, S. Buchner, H. Raschke, O.W. Perez-Lopez, D.L. Baptista, R. Hergenroder, M. Segala, F. Bernardi, New insights on the electronic factor of the SMSI effect in Pd/TiO2 nanoparticles, Appl. Surf. Sci. 574 (2022) 151647. [26] Z.F. Wu, Y.Y. Li, W.X. Huang, Size-dependent Pt-TiO2 strong metal-support interaction, J. Phys. Chem. Lett. 11 (2020) 4603-4607. [27] F. Polo-Garzon, T.F. Blum, Z.H. Bao, K. Wang, V. Fung, Z.N. Huang, E.E. Bickel, D.E. Jiang, M.F. Chi, Z.L. Wu, In situ strong metal-support interaction (SMSI) affects catalytic alcohol conversion, ACS Catal. 11 (4) (2021) 1938-1945. [28] W.L. Tu, M.Y. Chu, X.P. Wang, X.C. Wang, Y.F. Li, W.X. Yang, M.H. Cao, L. Wang, Y.Y. Li, T.K. Sham, Y. Cui, Q. Zhang, J.X. Chen, SMSI-induced charge transfer for selective hydrogenolysis of polyolefins, Appl. Catal. B Environ. 339 (2023) 123122. [29] E.W. Zhao, H.B. Zheng, K. Ludden, Y. Xin, H.E. Hagelin-Weaver, C.R. Bowers, Strong metal-support interactions enhance the pairwise selectivity of parahydrogen addition over Ir/TiO2, ACS Catal. 6 (2) (2016) 974-978. [30] J. Lee, I. Song, D.H. Kim, Suppressed strong metal-support interactions in platinum on sulfated titania and their influence on the oxidation of carbon monoxide, ChemCatChem 10 (6) (2018) 1258-1262. [31] Y.Y. Xi, J.M. Xiao, X.F. Lin, W.N. Yan, C.Y. Wang, C.G. Liu, SiO2-modified Pt/Al2O3 for oxidative dehydrogenation of ethane: a preparation method for improved catalytic stability, ethylene selectivity, and coking resistance, Ind. Eng. Chem. Res. 57 (31) (2018) 10137-10147. [32] S. Ted Oyama, G.N. Yun, S.J. Ahn, K.K. Bando, A. Takagaki, R. Kikuchi, How to scrutinize adsorbed intermediates observed by in situ spectroscopy: analysis of Coverage Transients (ACT), J. Catal. 394 (2021) 273-283. [33] H. Chen, Z.Z. Yang, X. Wang, F. Polo-Garzon, P.W. Halstenberg, T. Wang, X. Suo, S.Z. Yang, H.M. Meyer 3rd, Z.L. Wu, S. Dai, Photoinduced strong metal-support interaction for enhanced catalysis, J. Am. Chem. Soc. 143 (23) (2021) 8521-8526. [34] A. Shultz, W. Jang, W.H. III, Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+, Surf. Sci. 339 (1995) 114-124. [35] X.B. Zhang, H.M. Tian, X.Y. Wang, G.G. Xue, Z.P. Tian, J.Y. Zhang, S.K. Yuan, T. Yu, Z.G. Zou, The role of oxygen vacancy-Ti3+ states on TiO2 nanotubes' surface in dye-sensitized solar cells, Mater. Lett. 100 (2013) 51-53. [36] M.Y. Xing, W.Z. Fang, M. Nasir, Y.F. Ma, J.L. Zhang, M. Anpo, Self-doped Ti3+-enhanced TiO 2 nanoparticles with a high-performance photocatalysis, J. Catal. 297 (2013) 236-243. [37] M.Y. Byun, Y.E. Kim, J.H. Baek, J. Jae, M.S. Lee, Effect of surface properties of TiO2 on the performance of Pt/TiO2 catalysts for furfural hydrogenation, RSC Adv. 12 (2) (2022) 860-868. [38] G.J. Kim, D.W. Kwon, S.C. Hong, Effect of Pt particle size and valence state on the performance of Pt/TiO2 catalysts for CO oxidation at room temperature, J. Phys. Chem. C 120 (32) (2016) 17996-18004. [39] H. Gao, W. Xu, H. He, X. Shi, X. Zhang, K. ichi Tanaka, DRIFTS investigation and DFT calculation of the adsorption of CO on Pt/TiO2, Pt/CeO2 and FeOx/Pt/CeO2, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71 (2008) 1193-1198. [40] B. Han, Y.L. Guo, Y.K. Huang, W. Xi, J. Xu, J. Luo, H.F. Qi, Y.J. Ren, X.Y. Liu, B.T. Qiao, T. Zhang, Strong metal-support interactions between Pt single atoms and TiO2, Angew. Chem. Int. Ed Engl. 59 (29) (2020) 11824-11829. [41] J. Zhang, H. Wang, L. Wang, S. Ali, C.T. Wang, L.X. Wang, X.J. Meng, B. Li, D.S. Su, F.S. Xiao, Wet-chemistry strong metal-support interactions in titania-supported Au catalysts, J. Am. Chem. Soc. 141 (7) (2019) 2975-2983. [42] X.R. Du, Y.K. Huang, X.L. Pan, B. Han, Y. Su, Q.K. Jiang, M.R. Li, H.L. Tang, G. Li, B.T. Qiao, Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts, Nat. Commun. 11 (1) (2020) 5811. [43] D. Wang, Y.J. Zhu, C.G. Tian, L. Wang, W. Zhou, Y.L. Dong, Q. Han, Y.F. Liu, F.L. Yuan, H.G. Fu, Synergistic effect of Mo2N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt-Mo2N/SBA-15, Catal. Sci. Technol. 6 (7) (2016) 2403-2412. [44] H.Y. Pan, J.R. Li, J.Q. Lu, G.M. Wang, W.H. Xie, P. Wu, X.H. Li, Selective hydrogenation of cinnamaldehyde with PtFe/Al2O3@SBA-15 catalyst: enhancement in activity and selectivity to unsaturated alcohol by Pt-FeO and Pt-Al2O3@SBA-15 interaction, J. Catal. 354 (2017) 24-36. [45] B.L. Cui, H. Wang, J.Y. Han, Q.F. Ge, X.L. Zhu, Crystal-phase-depended strong metal-support interactions enhancing hydrodeoxygenation of m-cresol on Ni/TiO2 catalysts, J. Catal. 413 (2022) 880-890. [46] H.L. Liu, Z. Li, Y.W. Li, Chemoselective hydrogenation of cinnamaldehyde over a Pt-lewis acid collaborative catalyst under ambient conditions, Ind. Eng. Chem. Res. 54 (5) (2015) 1487-1497. [47] Z.K. Gao, Y.C. Hong, Z. Hu, B.Q. Xu, Transfer hydrogenation of cinnamaldehyde with 2-propanol on Al2O3 and SiO2-Al2O3 catalysts: role of Lewis and Broensted acidic sites, Catal. Sci. Technol. 7 (19) (2017) 4511-4519. [48] Y.Y. Xu, T.M. Su, X. Luo, Z.Z. Qin, H.B. Ji, Ni-Ti intercalated and supported bentonite for selective hydrogenation of cinnamaldehyde, ChemPhysChem 24 (10) (2023) e202200703. |