[1] R. Hage, A. Lienke, Applications of transition-metal catalysts to textile and wood-pulp bleaching, Angew. Chem. Int. Ed. 45 (2) (2006) 206–222. [2] Electrocatalytic H2O2 generation for disinfection. [3] R.P. Guan, X.Z. Yuan, Z.B. Wu, L.B. Jiang, Y.F. Li, G.M. Zeng, Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: A review, Chem. Eng. J. 339 (2018) 519–530. [4] M.M. Heravi, N. Ghalavand, E. Hashemi, Hydrogen peroxide as a green oxidant for the selective catalytic oxidation of benzylic and heterocyclic alcohols in different media: An overview, Chemistry 2 (1) (2020) 101–178. [5] X.J. Shi, S. Back, T.M. Gill, S. Siahrostami, X.L. Zheng, Electrochemical synthesis of H2O2 by two-electron water oxidation reaction, Chem 7 (1) (2021) 38–63. [6] L.B. Belykh, N.I. Skripov, T.P. Sterenchuk, V.V. Akimov, V.L. Tauson, T.A. Savanovich, F.K. Schmidt, Role of phosphorus in the formation of selective palladium catalysts for hydrogenation of alkylanthraquinones, Appl. Catal. A 589 (2020) 117293. [7] J.P. Zhou, J.W. Chen, Z.C. Yang, P. Liu, J.L. Luo, C. Du, H. Li, W.L. Liu, W.Q. Cai, Pd nanoparticles anchored and stabilized on N-doped boehmite@C with enhanced catalytic performance in 2-ethyl-9, 10 anthraquinone hydrogenation, Colloids Surf. A 647 (2022) 128977. [8] J.Y. Liang, F.Y. Wang, W. Li, J.L. Zhang, C.L. Guo, Highly dispersed and stabilized Pd species on H2 pre-treated Al2O3 for anthraquinone hydrogenation and H2O2 production, Mol. Catal. 524 (2022) 112264. [9] L. Wang, Y.E. Zhang, Q.Q. Ma, Z.Y. Pan, B.N. Zong, Hydrogenation of alkyl-anthraquinone over hydrophobically functionalized Pd/SBA-15 catalysts, RSC Adv. 9 (59) (2019) 34581–34588. [10] Q.L. Chen, Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor—from bench scale to industrial scale, Chem. Eng. Process. 47 (5) (2008) 787–792. [11] R. Kosydar, A. Drelinkiewicz, J.P. Ganhy, Degradation reactions in anthraquinone process of hydrogen peroxide synthesis, Catal. Lett. 139 (3) (2010) 105–113. [12] H.X. Bai, X.C. Fang, C. Peng, Synthesis of tailored egg-shell Pd@Al2O3 catalyst for catalytic hydrogenation of 2-alkylanthraquinone, ACS Sustainable Chem. Eng. 7 (8) (2019) 7700–7707. [13] E.X. Yuan, X.W. Ren, L. Wang, W.T. Zhao, A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al2O3 catalyst, Front. Chem. Sci. Eng. 11 (2) (2017) 177–184. [14] W.Y. Liang, J.F. Dong, M.Q. Yao, J.S. Fu, H.L. Chen, X.M. Zhang, Pd-Al/AC catalysts for direct synthesis of H2O2 with high productivity, ChemistrySelect 5 (42) (2020) 12910–12914. [15] Y.Y. Guo, C.N. Dai, Z.G. Lei, Hydrogenation of 2-ethylanthraquinone with bimetallic monolithic catalysts: An experimental and DFT study, Chin. J. Catal. 39 (6) (2018) 1070–1080. [16] Y.Y. Guo, Y.C. Dong, Z.G. Lei, Z.X. Liu, J.Q. Zhu, High-performance Pd-N (N = Ga or Ag) bimetallic monolithic catalyst for the hydrogenation of 2-ethylanthraquinone: Experimental and DFT studies, Mol. Catal. 509 (2021) 111604. [17] E.X. Yuan, C. Wu, X. Hou, M.B. Dou, G.Z. Liu, G.Z. Li, L. Wang, Synergistic effects of second metals on performance of (Co, Ag, Cu)-doped Pd/Al2O3 catalysts for 2-ethyl-anthraquinone hydrogenation, J. Catal. 347 (2017) 79–88. [18] C.L. Miao, T.L. Hui, Y.N. Liu, J.T. Feng, D.Q. Li, Pd/MgAl-LDH nanocatalyst with vacancy-rich sandwich structure: Insight into interfacial effect for selective hydrogenation, J. Catal. 370 (2019) 107–117. [19] W.Q. Li, F.M. Wang, X.B. Zhang, M.S. Sun, J.Q. Hu, Y. Zhai, H.H. Lv, G.J. Lv, Highly dispersed Pd nanoparticles supported on γ-Al2O3 modified by minimal 3-aminopropyltriethoxysilane as effective catalysts for 2-ethyl-anthraquinone hydrogenation, Appl. Catal. A 619 (2021) 118124. [20] F.Y. Wang, Y.M. Jia, J.Y. Liang, Y. Han, J.L. Zhang, X.Y. Li, W. Li, Intensifying strategy of ionic liquids for Pd-based catalysts in anthraquinone hydrogenation, Catal. Sci. Technol. 12 (6) (2022) 1766–1776. [21] J.T. Feng, H.Y. Wang, D.G. Evans, X. Duan, D.Q. Li, Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts, Appl. Catal. A 382 (2) (2010) 240–245. [22] A. Li, Y.H. Wang, J. Ren, J.L. Zhang, W. Li, C.L. Guo, Enhanced catalytic activity and stability over P-modified alumina supported Pd for anthraquinone hydrogenation, Appl. Catal. A 593 (2020) 117422. [23] Y.L. Li, X. Meng, R.W. Luo, H.N. Zhou, S.Y. Lu, S.N. Yu, P. Bai, X.H. Guo, J.F. Lyu, Aluminum/Tin-doped UiO-66 as Lewis acid catalysts for enhanced glucose isomerization to fructose, Appl. Catal. A 632 (2022) 118501. [24] M.J. Luo, Q.F. Wang, G.Z. Li, X.W. Zhang, L. Wang, T. Jiang, Enhancing tetralin hydrogenation activity and sulphur-tolerance of Pt/MCM-41 catalyst with Al(NO3)3, AlCl3 and Al(CH3)3, Catal. Sci. Technol. 4 (7) (2014) 2081–2090. [25] R.J. Deng, K.Y. You, L. Yi, F.F. Zhao, J.A. Jian, Z.P. Chen, P.L. Liu, Q.H. Ai, H.A. Luo, Solvent-free, low-temperature, highly efficient catalytic nitration of toluene with NO2 promoted by molecular oxygen over immobilized AlCl3–SiO2, Ind. Eng. Chem. Res. 57 (39) (2018) 12993–13000. [26] J.B. Wen, K.Y. You, F.F. Zhao, J. Jian, P.L. Liu, Q.H. Ai, H.A. Luo, AlCl3 immobilized on silicic acid as efficient Lewis acid catalyst for highly selective preparation of dicyclohexylamine from the vapor phase hydroamination of cyclohexene with cyclohexylamine, Catal. Commun. 145 (2020) 106112. [27] X.N. Xiong, I.K.M. Yu, D.C.W. Tsang, L. Chen, Z.S. Su, C.W. Hu, G. Luo, S.C. Zhang, Y.S. Ok, J.H. Clark, Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts, J. Clean. Prod. 268 (2020) 122378. [28] I.K.M. Yu, X.N. Xiong, D.C.W. Tsang, L. Wang, A.J. Hunt, H. Song, J. Shang, Y.S. Ok, C.S. Poon, Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery, Green Chem. 21 (6) (2019) 1267–1281. [29] Y. Han, Z.Y. He, Y.C. Guan, W. Li, J.L. Zhang, Catalytic performance of PdAu/Al2O3 catalyst with special structural and electronic properties in the 2-ethylanthraquinone hydrogenation reaction, Acta Phys. Chim. Sin. 31 (4) (2015) 729–737. [30] Y.H. Wang, M. Peng, C.L. Ye, C.N. Gan, J.L. Zhang, C.L. Guo, Enhanced catalytic performance of Pd-Ga bimetallic catalysts for 2-ethylanthraquinone hydrogenation, Appl. Organomet. Chem. 33 (8) (2019). DOI:10.1002/aoc.5076. [31] J.L. Zhang, K.G. Gao, S.L. Wang, W. Li, Y. Han, Performance of bimetallic PdRu catalysts supported on gamma alumina for 2-ethylanthraquinone hydrogenation, RSC Adv. 7 (11) (2017) 6447–6456. [32] P. Bai, W. Xing, Z.X. Zhang, Z.F. Yan, Facile synthesis of thermally stable mesoporous crystalline alumina by using a novel cation-anion double hydrolysis method, Mater. Lett. 59 (24–25) (2005) 3128–3131. [33] C.L. Lu, J.G. Lv, L. Xu, X.F. Guo, W.H. Hou, Y. Hu, H. Huang, Crystalline nanotubes of γ-AlOOH and γ-Al2O3: Hydrothermal synthesis, formation mechanism and catalytic performance, Nanotechnology 20 (21) (2009) 215604. [34] P.P. Wu, L. Song, Y. Wang, X.H. Liu, Z.K. He, P. Bai, Z.F. Yan, High-performance benzyl alcohol oxidation catalyst: Au-Pd alloy with ZrO2 as promoter, Appl. Surf. Sci. 537 (2021) 148059. [35] Y.Q. Wu, L. Tan, T. Zhang, H.J. Xie, G.H. Yang, N. Tsubaki, J.G. Chen, Effect of preparation method on ZrO2-based catalysts performance for isobutanol synthesis from syngas, Catalysts 9 (9) (2019) 752. [36] J. Huang, Y.J. Jiang, N. van Vegten, M. Hunger, A. Baiker, Tuning the support acidity of flame-made Pd/SiO2-Al2O3 catalysts for chemoselective hydrogenation, J. Catal. 281 (2) (2011) 352–360. [37] L.K. Ouyang, G.J. Da, P.F. Tian, T.Y. Chen, G.D. Liang, J. Xu, Y.F. Han, Insight into active sites of Pd-Au/TiO2 catalysts in hydrogen peroxide synthesis directly from H2 and O2, J. Catal. 311 (2014) 129–136. [38] T. Yang, J. Lin, X.H. Chen, Y. Zheng, An attempt to tailor methane oxidation behaviors over Pd/Al2O3 systems through the concerted fashion of Zn and alkaline-metal promoters, J. Alloys Compd. 904 (2022) 164065. [39] G. Spezzati, Y.Q. Su, J.P. Hofmann, A.D. Benavidez, A.T. DeLaRiva, J. McCabe, A.K. Datye, E.J.M. Hensen, Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation, ACS Catal. 7 (10) (2017) 6887–6891. [40] K. Li, T.T. Lyu, J.Y. He, B.W.L. Jang, Selective hydrogenation of acetylene over Pd/CeO2, Front. Chem. Sci. Eng. 14 (6) (2020) 929–936. [41] D.X. Han, Z.G. Zhang, Z.B. Bao, H.B. Xing, Q.L. Ren, Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions, Front. Chem. Sci. Eng. 12 (1) (2018) 24–31. [42] R.R. Hong, Y.F. He, J.T. Feng, D.Q. Li, Fabrication of supported Pd–Ir/Al2O3 bimetallic catalysts for 2-ethylanthraquinone hydrogenation, AIChE J. 63 (9) (2017) 3955–3965. [43] E.X. Yuan, C. Wu, G.Z. Liu, L. Wang, One-pot synthesis of Pd nanoparticles on ordered mesoporous Al2O3 for catalytic hydrogenation of 2-ethyl-anthraquinone, Appl. Catal. A 525 (2016) 119–127. [44] D.F. Yin, Q.H. Xin, S.T. Yu, L. Jiang, L. Li, C.X. Xie, Q. Wu, H.L. Yu, Y.X. Liu, Y.E. Liu, S.W. Liu, Selective hydrogenation of phenol to cyclohexanone over a highly stable core-shell catalyst with Pd-lewis acid sites, J. Phys. Chem. C 125 (49) (2021) 27241–27251. [45] G.Z. Jia, C.M. Guo, W. Wang, X.F. Bai, X.M. Wei, X.F. Su, T. Li, L.F. Xiao, W. Wu, The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the n-hexadecane hydroisomerization, Front. Chem. Sci. Eng. 15 (5) (2021) 1111–1124. [46] O.M. Busch, W. Brijoux, S. Thomson, F. Schüth, Spatially resolving infrared spectroscopy for parallelized characterization of acid sites of catalysts via pyridine sorption: Possibilities and limitations, J. Catal. 222 (1) (2004) 174–179. [47] X.C. Cao, J.P. Zhao, F. Long, X.L. Zhang, J.M. Xu, J.C. Jiang, Al-modified Pd@mSiO2 core-shell catalysts for the selective hydrodeoxygenation of fatty acid esters: Influence of catalyst structure and Al atoms incorporation, Appl. Catal. B 305 (2022) 121068. |