[1] Y.X. Liu, L. Zhao, Y.G. Zhang, L.T. Zhang, X.J. Zan, Progress and challenges of mercury-free catalysis for acetylene hydrochlorination, Catalysts 10 (10) (2020) 1218. [2] J.W. Zhong, Y.P. Xu, Z.M. Liu, Heterogeneous non-mercury catalysts for acetylene hydrochlorination: Progress, challenges, and opportunities, Green Chem. 20 (11) (2018) 2412-2427. [3] R. Lin, A.P. Amrute, J. Perez-Ramirez, Halogen-mediated conversion of hydrocarbons to commodities, Chem Rev 117 (5) (2017) 4182-4247. [4] H. Xu, G.H. Luo, Green production of PVC from laboratory to industrialization: State-of-the-art review of heterogeneous non-mercury catalysts for acetylene hydrochlorination, J. Ind. Eng. Chem. 65 (2018) 13-25. [5] I.T. Trotus, T. Zimmermann, F. Schuth, Catalytic reactions of acetylene: A feedstock for the chemical industry revisited, Chem. Rev. 114 (3) (2014) 1761-1782. [6] G.J. Hutchings, Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts, J. Catal. 96 (1) (1985) 292-295. [7] C.M. Zhang, H.Y. Zhang, B.C. Man, X. Li, H. Dai, J.L. Zhang, Hydrochlorination of acetylene catalyzed by activated carbon supported highly dispersed gold nanoparticles, Appl. Catal. A Gen. 566 (2018) 15-24. [8] Y.R. Fan, Z.S. Liu, S.Y. Sun, W.J. Huang, L. Ma, Z. Qu, N.Q. Yan, H.M. Xu, Metal-Organic Frameworks Encaged Ru Single Atoms for Rapid Acetylene Harvest and Activation in Hydrochlorination, Acs. Appl. Mater. Inter. 15 (20) (2023) 24701-24712. [9] S.A. Mitchenko, T.V. Krasnyakova, R.S. Mitchenko, A.N. Korduban, Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt, J. Mol. Catal. A Chem. 275 (1-2) (2007) 101-108. [10] F. Li, X.M. Wang, P.Z. Zhang, Q.Q. Wang, M.Y. Zhu, B. Dai, Nitrogen and phosphorus co-doped activated carbon induces high density Cu' active center for acetylene hydrochlorination, Chin. J. Chem. Eng. 59 (2023) 193-199. [11] D. Hu, L. Wang, F. Wang, J.D. Wang, Active carbon supported S-promoted Bi catalysts for acetylene hydrochlorination reaction, Chin. Chem. Lett. 29 (9) (2018) 1413-1416. [12] Y.Z. Dong, H.Y. Zhang, W. Li, M.X. Sun, C.L. Guo, J.L. Zhang, Bimetallic Au-Sn/AC catalysts for acetylene hydrochlorination, J. Ind. Eng. Chem. 35 (2016) 177-184. [13] X.L. Qiao, Z.Q. Zhou, X.Y. Liu, C.Y. Zhao, Q.X. Guan, W. Li, Constructing a fragmentary g-C3N4 framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination, Catal. Sci. Technol. 9 (14) (2019) 3753-3762. [14] X.Y. Li, X.L. Pan, L. Yu, P.J. Ren, X. Wu, L.T. Sun, F. Jiao, X.H. Bao, Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene, Nat. Commun. 5 (2014) 3688. [15] X.G. Wang, B. Dai, Y. Wang, F. Yu, Nitrogen-doped pitch-based spherical active carbon as a nonmetal catalyst for acetylene hydrochlorination, ChemCatChem 6 (8) (2014) 2339-2344. [16] Z.J. Song, G.Y. Liu, D.W. He, X.D. Pang, Y.S. Tong, Y.Q. Wu, D.H. Yuan, Z.M. Liu, Y.P. Xu, Acetylene hydrochlorination over 13X zeolite catalysts at high temperature, Green Chem. 18 (22) (2016) 5994-5998. [17] K. Zhou, J.C. Jia, C.H. Li, H. Xu, J. Zhou, G.H. Luo, F. Wei, A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes, Green Chem. 17 (1) (2015) 356-364. [18] S.A. Mitchenko, T.V. Krasnyakova, I.V. Zhikharev, Kinetics and mechanism of catalytic acetylene hydrochlorination with gaseous HCl on the surface of mechanically activated K2PdCl4, Kinet. Catal. 50 (5) (2009) 734-740. [19] D.I. Kamenski, S.D. Dimitrov, L.A. Sil’chenko, G.K. Shestakov, K.U. Odinzov, O.N. Temkin, Modelling the catalytic hydrochlorination of ethyne, Appl. Catal. 67 (1) (1990) 159-168. [20] T.V. Krasnyakova, D.V. Nikitenko, E.V. Khomutova, S.A. Mitchenko, Catalytic hydrochlorination of acetylene on PdCl2/C supported catalysts: Kinetic isotopic effect of HCl/DCl, stereoselectivity, and mechanism, Kinet. Catal. 58 (5) (2017) 533-540. [21] K. Shinoda, The vapor-phase hidrochlorination of acetylene over metal chlorides supported on activated carbon, Chem. Lett. 4 (3) (1975) 219-220. [22] Y.B. Wu, F.X. Li, Z.P. Lv, J.W. Xue, Synthesis and characterization of X-MOF/AC (x=tin or copper) catalysts for the acetylene hydrochlorination, ChemistrySelect 4 (32) (2019) 9403-9409. [23] H.Y. Zhang, W. Li, Y.H. Jin, W. Sheng, M.C. Hu, X.Q. Wang, J.L. Zhang, Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination, Appl. Catal. B Environ. 189 (2016) 56-64. [24] Y. Han, Y.L. Wang, Y. Wang, Y.B. Hu, Y. Nian, W. Li, J.L. Zhang, Pyrrolidone ligand improved Cu-based catalysts with high performance for acetylene hydrochlorination, Appl. Organomet. Chem. 35 (1) (2021) 6066. [25] B. Wang, T.T. Zhang, Y.W. Liu, W. Li, H.Y. Zhang, J.L. Zhang, Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination, Appl. Catal. A Gen. 630 (2022) 118461. [26] H.Y. Zhang, B. Dai, W. Li, X.G. Wang, J.L. Zhang, M.Y. Zhu, J.J. Gu, Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co(III)-Cu(II) catalysts, J. Catal. 316 (2014) 141-148. [27] Y. Wang, Y. Nian, J.L. Zhang, W. Li, Y. Han, MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination, Mol. Catal. 479 (2019) 110612. [28] S.J. Wang, B.X. Shen, Q.L. Song, Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst, Catal. Lett. 134 (1) (2010) 102-109. [29] H. Xu, J.K. Si, G.H. Luo, The kinetics model and fixed bed reactor simulation of Cu catalyst for acetylene hydrochlorination, Int. J. Chem. React. Eng. 15 (4) (2017) 20160165. [30] T. Wang, Z. Jiang, Q. Tang, B.L. Wang, S.S. Wang, M.D. Yu, R.Q. Chang, Y.X. Yue, J. Zhao, X.N. Li, Interactions between atomically dispersed copper and phosphorous species are key for the hydrochlorination of acetylene, Commun. Chem. 5 (1) (2022) 2. [31] H. Li, F.M. Wang, W.F. Cai, J.L. Zhang, X.B. Zhang, Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts, Catal. Sci. Technol. 5 (12) (2015) 5174-5184. [32] H.H. He, J. Zhao, B.L. Wang, Y.X. Yue, G.F. Sheng, Q.T. Wang, L. Yu, Z.T. Hu, X.N. Li, Highly active AuCu-based catalysts for acetylene hydrochlorination prepared using organic aqua regia, Materials (Basel) 12 (8) (2019) 1310. [33] Y.B. Hu, Y. Wang, Y.L. Wang, W. Li, J.L. Zhang, Y. Han, High performance of supported Cu-based catalysts modulated via phosphamide coordination in acetylene hydrochlorination, Appl. Catal. A Gen. 591 (2020) 117408. [34] X.M. Wang, M.Y. Zhu, B. Dai, Effect of phosphorus ligand on Cu-based catalysts for acetylene hydrochlorination, ACS Sustainable Chem. Eng. 7 (6) (2019) 6170-6177. [35] C.Y. Zhao, X.M. Zhang, Z.T. He, Q.X. Guan, W. Li, Demystifying the mechanism of NMP ligands in promoting Cu-catalyzed acetylene hydrochlorination: Insights from a density functional theory study, Inorg. Chem. Front. 7 (17) (2020) 3204-3216. [36] Y.F. Du, R.S. Hu, Y. Jia, Q.H. Zhou, W.W. Meng, J. Yang, CuCl2 promoted low-gold-content Au/C catalyst for acetylene hydrochlorination prepared by ultrasonic-assisted impregnation, J. Ind. Eng. Chem. 37 (2016) 32-41. [37] K. Zhou, B. Li, Q. Zhang, J.Q. Huang, G.L. Tian, J.C. Jia, M.Q. Zhao, G.H. Luo, D.S. Su, F. Wei, The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes, ChemSusChem 7 (3) (2014) 723-728. [38] Y.Y. Zhai, J. Zhao, X.X. Di, S.X. Di, B.L. Wang, Y.X. Yue, G.F. Sheng, H.X. Lai, L.L. Guo, H. Wang, X.N. Li, Carbon-supported perovskite-like CsCuCl3 nanoparticles: A highly active and cost-effective heterogeneous catalyst for the hydrochlorination of acetylene to vinyl chloride, Catal. Sci. Technol. 8 (11) (2018) 2901-2908. [39] Y.B. Wu, Y. Ma, Q.B. Li, S.T. Li, Y.J. Han, F.X. Li, Carbon-supported copper-organic framework as active catalysts for acetylene hydrochlorination, Can. J. Chem. 99 (10) (2021) 812-820. [40] J.L. Zhang, W. Sheng, C.L. Guo, W. Li, Acetylene hydrochlorination over bimetallic Ru-based catalysts, RSC Adv. 3 (43) (2013) 21062-21068. [41] B.L. Wang, Z. Jiang, T. Wang, Q. Tang, M.D. Yu, T. Feng, M. Tian, R.Q. Chang, Y.X. Yue, Z.Y. Pan, J. Zhao, X.N. Li, Controllable synthesis of vacancy-defect Cu site and its catalysis for the manufacture of vinyl chloride monomer, ACS Catal. 11 (17) (2021) 11016-11028. [42] H. Watanabe, H. Onozuka, Kinetics and Mechanism of the Catalytic Hydrochlorination of Acetylene to Vinyl Chloride, J Chem Soc Japan Ind Chem Sect 62 (1959) 125-127. [43] R.D. Wesselhoft, J.M. Woods, J.M. Smith, Vinyl chloride from acetylene and hydrogen chloride: Catalytic-rate studies, AlChE. J. 5 (3) (1959) 361-366. [44] J.M. Ma, S.J. Wang, B.X. Shen, Study on the effects of acetylene on an Au-Cu/C catalyst for acetylene hydrochlorination using Monte Carlo and DFT methods, React. Kinet. Mech. Catal. 110 (1) (2013) 177-186. [45] S. Siradze, J. Poissonnier, A.R. Costa da Cruz, J.W. Thybaut, Top-down kinetic modeling from power law to elementary steps using KASTER: A methane steam reforming case study, AlChE. J. 69 (9) (2023): 18151. [46] L. Wang, B.X. Shen, R.F. Ren, J.G. Zhao, Simulation Analysis of Fixed Bed Reactor for Au-Cu Non-mercury Catalytic Acetylene Hydrochlorination, Appl Mech Mater 455 (2014) 94-98. [47] S. Ali, Z. Lian, B. Li, Density functional theory study of a graphdiyne-supported single Au atom catalyst for highly efficient acetylene hydrochlorination, ACS Appl. Nano Mater. 4 (6) (2021) 6152-6159. [48] S. Ali, M. Haneef, J. Akbar, I. Ullah, S. Ullah, A. Samad, Single Au atom supported defect mediated boron nitride monolayer as an efficient catalyst for acetylene hydrochlorination: A first principles study, Mol. Catal. 511 (2021) 111753. [49] G. Caygill, M. Zanfir, A. Gavriilidis, Scalable reactor design for pharmaceuticals and fine chemicals production. 1: Potential scale-up obstacles, Org. Process Res. Dev. 10 (3) (2006) 539-552. |