[1] O. Levenspiel, Chemical Reaction Engineering (3rd ed.), John Wiley & Sons, New York, 1999. [2] B.C. Zhu, Chemical Reaction Engineering, Chemical Industry Press, Beijing, China, 2006, in Chinese. [3] O. Levenspiel, G/S reactor models-Packed beds, bubbling fluidized beds, turbulent fluidized beds and circulating (fast) fluidized beds, Powder Technol. 122 (1) (2002) 1-9. [4] P.G. de Gennes, Granular matter: A tentative view, Rev. Mod. Phys. 71 (2) (1999) S374-S382. [5] J. Zhou, W.K. Hao, Q.H. Zhu, Mass transfer intensification between fluidizing gas and Geldart-B nonmagnetizable particles in magnetized fluidized bed, AIChE. J. 67 (11) (2021) e17407. [6] T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, K. Tejima, A twin fluid-bed reactor for removal of CO2 from combustion processes, Chem. Eng. Res. Des. 77 (1) (1999) 62-68. [7] S. Shaul, E. Rabinovich, H. Kalman, Typical fluidization characteristics for Geldart’s classification groups, Part. Sci. Technol. 32 (2) (2014) 197-205. [8] Z.B. Peng, Y.A. Alghamdi, B. Moghtaderi, E. Doroodchi, CFD-DEM investigation of transition from segregation to mixing of binary solids in gas fluidised beds, Adv. Powder Technol. 27 (6) (2016) 2342-2353. [9] S. Shrestha, B. Si Ali, B.M. Jan, M. Lim, K. El Sheikh, Hydrodynamic properties of a cold model of dual fluidized bed gasifier: A modeling and experimental investigation, Chem. Eng. Res. Des. 109 (2016) 791-805. [10] Y.C. Zhou, B.H. Xu, A.B. Yu, P. Zulli, An experimental and numerical study of the angle of repose of coarse spheres, Powder Technol. 125 (1) (2002) 45-54. [11] Q.H. Zhu, W.K. Hao, J.L. Tao, Q.S. Huang, C. Yang, State dependence of magnetized fluidized bed reactor on operation mode, Chem. Eng. J. 407 (2021) 127211. [12] S.C. Tsinontides, R. Jackson, The mechanics of gas fluidized beds with an interval of stable fluidization, J. Fluid Mech. 255 (1993) 237. [13] O. Oke, P. Lettieri, L. Mazzei, An investigation on the mechanics of homogeneous expansion in gas-fluidized beds, Chem. Eng. Sci. 127 (2015) 95-105. [14] J.A. Agbim, A.W. Nienow, P.N. Rowe, Inter-particle forces that suppress bubbling in gas fluidised beds, Chem. Eng. Sci. 26 (8) (1971) 1293-1294. [15] Q.H. Zhu, H.J. Gai, H.B. Song, M. Xiao, T.T. Huang, W.K. Hao, Identification of flow regimes and determination of the boundaries for magnetized fluidized bed with Geldart-B particles, Particuology 71 (2022) 75-89. [16] M.J. Rhodes, X.S. Wang, A.J. Forsyth, K.S. Gan, S. Phadtajaphan, Use of a magnetic fluidized bed in studying Geldart group B to A transition, Chem. Eng. Sci. 56 (18) (2001) 5429-5436. [17] P. Gibbs, Is glass liquid or solid? 2019. https://www.researchgate.net/publication/330141691. [18] Y. Demirel, Nonequilibrium Thermodynamics (3rd ed.), Elsevier, Amsterdam, 2014. [19] Y. Zimmels, W. Resnick, O. Harel, Hysteresis phenomena in magnetized-fluidized beds, Powder Technol. 64 (1-2) (1991) 49-55. [20] M. Kwauk, H.Z. Li, Handbook of Fluidization, Chemical Industry Press, Beijing, 2007, in Chinese. [21] R. Gujjula, N. Mangadoddy, Experimental investigation of hydrodynamics of gas-solid flow in an internally circulating fluidized bed, Can. J. Chem. Eng. 93 (8) (2015) 1380-1391. [22] Q.H. Zhu, Q. Zhang, P.Y. Yang, H.J. Gai, M.Q. Lin, H.B. Song, M. Xiao, T.T. Huang, Measuring segregation in fluidized bed with magnetizable and nonmagnetizable particles based on magnetic permeability, Fuel 340 (2023) 127554. [23] W.K. Liu, H. Guan, Q. Zhang, Y.L. Cao, Q.H. Zhu, Discharge of packed magnetizable particles through side orifice in the absence and presence of a magnetic field, Ind. Eng. Chem. Res. 63 (10) (2024) 4691-4701. [24] Q.H. Zhu, Y.L. Cao, Q. Zhang, W.K. Liu, H. Guan, X.R. Wang, H.J. Gai, H.B. Song, M. Xiao, T.T. Huang, A new method for measuring angle of repose for particles, China Pat., CN202410082858.0 (2024), in Chinese. [25] S.M. Wu, B. Straiton, Y. Zong, Q. Marashdeh, L.Q. Li, Z.M. Xu, L. Zhao, A new measurement method for mixing and segregation of binary mixture by combining gas cutting-off method and ECVT, Powder Technol. 409 (2022) 117806. [26] P.N. Rowe, A.W. Nienow, Particle mixing and segregation in gas fluidised beds. A review, Powder Technol. 15 (2) (1976) 141-147. [27] J.L. Tao, W.K. Hao, Q.H. Zhu, Segregation in magnetized fluidized bed with Geldart-B magnetizable and nonmagnetizable particles, Chem. Eng. Process. Process. Intensif. 164 (2021) 108421. [28] H.J. Gai, H.B. Song, M. Xiao, T.T. Huang, W.K. Hao, Q.H. Zhu, Improve reproducibility of determining minimum fluidization velocity via endowing it with a precise definition, Part. Sci. Technol. 41 (3) (2023) 341-349. [29] Q.H. Zhu, Q. Zhang, P.Y. Yang, H.J. Gai, Z. Wang, H.B. Song, M. Xiao, T.T. Huang, Comparing two methods of acquiring stable fluidization state for binary particles during measurement of segregation, Fuel 346 (2023) 128410. [30] S.Y. Wu, J. Baeyens, Segregation by size difference in gas fluidized beds, Powder Technol. 98 (2) (1998) 139-150. [31] H.L. Lu, Y.R. He, D. Gidaspow, L.D. Yang, Y.K. Qin, Size segregation of binary mixture of solids in bubbling fluidized beds, Powder Technol. 134 (1-2) (2003) 86-97. [32] G.G. Joseph, J. Leboreiro, C.M. Hrenya, A.R. Stevens, Experimental segregation profiles in bubbling gas-fluidized beds, AIChE. J. 53 (11) (2007) 2804-2813. [33] Z.B. Peng, E. Doroodchi, Y. Alghamdi, B. Moghtaderi, Mixing and segregation of solid mixtures in bubbling fluidized beds under conditions pertinent to the fuel reactor of a chemical looping system, Powder Technol. 235 (2013) 823-837. [34] A. Rao, J.S. Curtis, B.C. Hancock, C. Wassgren, Classifying the fluidization and segregation behavior of binary mixtures using particle size and density ratios, AIChE. J. 57 (6) (2011) 1446-1458. [35] Y. Jin, J.X. Zhu, Z.W. Wang, Z.Q. Yu, Principles of Fluidization Engineering, Tsinghua University Press, Beijing, 2001. (in Chinese). [36] E.C. Abdullah, D. Geldart, The use of bulk density measurements as flowability indicators, Powder Technol. 102 (2) (1999) 151-165. [37] Q.H. Zhu, H. Xiao, R.C. Zhang, S.J. Geng, Q.S. Huang, Effect of impeller type on preparing spherical and dense Ni1-x-yCoxMny(OH)2 precursor via continuous co-precipitation in pilot scale: A case of Ni0·6Co0·2Mn0·2(OH)2, Electrochim. Acta 318 (2019) 1-13. [38] Z.J. Fu, J. Zhu, S. Barghi, Y.M. Zhao, Z.F. Luo, C.L. Duan, Minimum fluidization velocity of binary mixtures of medium particles in the air dense medium fluidized bed, Chem. Eng. Sci. 207 (2019) 194-201. [39] Q.H. Zhu, L.B. Zhang, W.K. Hao, Determining minimum fluidization velocity in magnetized fluidized bed with Geldart-B particles, Powder Technol. 389 (2021) 85-95. [40] D. Kunii, O. Levenspiel, Fluidization Engineering (2nd ed.), Butterworth-Heinemann, Boston, 1991. [41] Z.J. Fu, J. Zhu, S. Barghi, Y.M. Zhao, Z.F. Luo, C.L. Duan, Minimum fluidization velocity growth due to bed inventory increase in an air dense medium fluidized bed, Chem. Eng. J. 359 (2019) 1372-1378. [42] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89-94. [43] M.H. Chen, D.Z. Cong, T.N. Fang, M.Z. Qi, Principles of Chemical Engineering, Chemical Industry Press, Beijing, 2006. (in Chinese). [44] J. Davidson, D. Harrison, Fluidized Particles, Cambridge University Press, Cambridge, 1963. [45] L. Cheung, A.W. Nienow, P.N. Rowe, Minimum fluidisation velocity of a binary mixture of different sized particles, Chem. Eng. Sci. 29 (5) (1974) 1301-1303. [46] T.R. Rao, J.V.R. Bheemarasetti, Minimum fluidization velocities of mixtures of biomass and sands, Energy 26 (6) (2001) 633-644. [47] W. Wang, J.S. Zhang, S. Yang, H. Zhang, H.R. Yang, G.X. Yue, Experimental study on the angle of repose of pulverized coal, Particuology 8 (5) (2010) 482-485. [48] M.A. Carrigy, Experiments on the angles of repose of granular materials, Sedimentology 14 (3-4) (1970) 147-158. [49] K.E. Ileleji, B. Zhou, The angle of repose of bulk corn stover particles, Powder Technol. 187 (2) (2008) 110-118. [50] B. Formisani, R. Girimonte, V. Vivacqua, Fluidization of mixtures of two solids differing in density or size, AIChE. J. 57 (9) (2011) 2325-2333. [51] P.F. Zhao, Y.M. Zhao, Z.Q. Chen, Z.F. Luo, Dry cleaning of fine lignite in a vibrated gas-fluidized bed: Segregation characteristics, Fuel 142 (2015) 274-282. [52] Z.J. Fu, J. Zhu, S. Barghi, Y.M. Zhao, Z.F. Luo, C.L. Duan, Mixing and segregation behavior in an air dense medium fluidized bed with binary mixtures for dry coal beneficiation, Powder Technol. 371 (2020) 161-169. [53] A.C. Hoffmann, L.P.B.M. Janssen, J. Prins, Particle segregation in fluidised binary mixtures, Chem. Eng. Sci. 48 (9) (1993) 1583-1592. [54] G. Olivieri, A. Marzocchella, P. Salatino, Segregation of fluidized binary mixtures of granular solids, AIChE. J. 50 (12) (2004) 3095-3106. [55] Q. Liu, H.J. Gai, Q.H. Zhu, W.K. Hao, Effect of internal friction among unfluidized particles on measuring minimum fluidization velocity and segregation index, Chem. Eng. Commun. 210 (3) (2023) 348-360. [56] K.Q. Lu, J.X. Liu, Static and dynamic properties of granular matter (I), Physics 33 (9) (2004) 629-635. (in Chinese). [57] K.Q. Lu, J.X. Liu, Static and dynamic properties of granular matter (II), Physics 33 (10) (2004) 713-721. (in Chinese). |