[1] C. Paolucci, I. Khurana, A.A. Parekh, S. Li, A.J. Shih, H. Li, J.R. Di Iorio, J.D. Albarracin-Caballero, A. Yezerets, J.T. Miller, W.N. Delgass, F.H. Ribeiro, W.F. Schneider, R. Gounder, Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction, Science 357 (6354) (2017) 898-903. [2] C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust, Science 327 (5973) (2010) 1624-1627. [3] R. Abid, G. Delahay, H. Tounsi, Selective catalytic reduction of NO by NH3 on cerium modified faujasite zeolite prepared from aluminum scraps and industrial metasilicate, J. Rare Earths 38 (3) (2020) 250-256. [4] L.P. Han, S.X. Cai, M. Gao, J.Y. Hasegawa, P.L. Wang, J.P. Zhang, L.Y. Shi, D.S. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects, Chem. Rev. 119 (19) (2019) 10916-10976. [5] B. Choi, K.S. Lee, LNT/CDPF catalysts for simultaneous removal of NOx and PM from diesel vehicle exhaust, Chem. Eng. J. 240 (2014) 476-486. [6] R. Niessner, The many faces of soot: characterization of soot nanoparticles produced by engines, Angew Chem Int Ed 53 (46) (2014) 12366-12379. [7] J. Yang, Z. Li, J. Cui, Y. Ma, Y. Li, Q. Zhang, K. Song, C. Yang, Fabrication of wide temperature lanthanum and cerium doped Cu/TNU-9 catalyst with excellent NH3-SCR performance and outstanding SO2 + H2O tolerance, J. Rare Earths 41 (2023) 1195-1202. [8] S. Bensaid, V. Balakotaiah, D. Luss, Simulation of NOx and soot abatement with Cu-Cha and Fe-ZSM5 catalysts, AlChE. J. 63 (1) (2017) 238-248. [9] Y. Teraoka, K. Nakano, S. Kagawa, W.F. Shangguan, Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides, Appl. Catal. B Environ. 5 (3) (1995) L181-L185. [10] Y. Cheng, J. Liu, Z. Zhao, W.Y. Song, Y.C. Wei, Highly efficient and simultaneously catalytic removal of PM and NOx from diesel engines with 3DOM Ce0.8M0.1Zr0.1O2 (M=Mn, Co, Ni) catalysts, Chem. Eng. Sci. 167 (2017) 219-228. [11] Y. Cheng, J. Liu, Z. Zhao, W.Y. Song, Y.C. Wei, A new 3DOM Ce-Fe-Ti material for simultaneously catalytic removal of PM and NOx from diesel engines, J. Hazard. Mater. 342 (2018) 317-325. [12] Y. Cheng, W.Y. Song, J. Liu, H.L. Zheng, Z. Zhao, C.M. Xu, Y.C. Wei, E.J.M. Hensen, Simultaneous NOx and particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr oxide, ACS Catal. 7 (6) (2017) 3883-3892. [13] L.H. Chen, M.H. Sun, Z. Wang, W.M. Yang, Z.K. Xie, B.L. Su, Hierarchically structured zeolites: from design to application, Chem. Rev. 120 (20) (2020) 11194-11294. [14] Z.D. Liu, T. Wakihara, K. Oshima, D. Nishioka, Y. Hotta, S.P. Elangovan, Y. Yanaba, T. Yoshikawa, W. Chaikittisilp, T. Matsuo, T. Takewaki, T. Okubo, Widening synthesis bottlenecks: realization of ultrafast and continuous-flow synthesis of high-silica zeolite SSZ-13 for NOx removal, Angew. Chem. Int. Ed 54 (19) (2015) 5683-5687. [15] Y. Wu, J. Wang, Z.X. Chen, Y. Zhu, M.H. Yu, C. Wang, Y.P. Zhai, J.Q. Wang, G.R. Shen, M.Q. Shen, A novel material for passive NOx adsorber: Ce-based BEA zeolite, J. Rare Earths 41 (8) (2023) 1163-1170. [16] R.N. Xu, Z.Y. Wang, N. Liu, C.N. Dai, J. Zhang, B.H. Chen, Understanding Zn functions on hydrothermal stability in a one-pot-synthesized Cu&Zn-SSZ-13 catalyst for NH3 selective catalytic reduction, ACS Catal. 10 (11) (2020) 6197-6212. [17] T. Wang, Z.T. Wan, X.C. Yang, X.Y. Zhang, X.X. Niu, B.M. Sun, Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the Fast SCR reaction, Fuel Process. Technol. 169 (2018) 112-121. [18] X. Feng, Y. Cao, L. Lan, C.L. Lin, Y.S. Li, H.D. Xu, M.C. Gong, Y.Q. Chen, The promotional effect of Ce on CuFe/beta monolith catalyst for selective catalytic reduction of NOx by ammonia, Chem. Eng. J. 302 (2016) 697-706. [19] J.H. Kwak, R.G. Tonkyn, D.H. Kim, J. Szanyi, C.H.F. Peden, Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3, J. Catal. 275 (2) (2010) 187-190. [20] Y. Ma, X.D. Wu, L.P. Liu, L. Cao, R. Ran, Z.C. Si, F. Gao, D. Weng, Critical roles of Cu(OH)2 in low-temperature moisture-induced degradation of Cu-SAPO-34 SCR catalyst: Correlating reversible and irreversible deactivation, Appl. Catal. B Environ. 278 (2020) 119306. [21] P. Sazama, B. Wichterlova, S. Sklenak, V.I. Parvulescu, N. Candu, G. Sadovska, J. Dedecek, P. Klein, V. Pashkova, P. Stastny, Acid and redox activity of template-free Al-rich H-BEA and Fe-BEA zeolites, J. Catal. 318 (2014) 22-33. [22] X. Guo, Z.Y. Ding, N. Kang, L. Yang, Y.J. Wang, C. Zhang, Z.Q. Li, T.T. Zhang, Y. Wang, Y. Wang, H. Qu, Ce enhanced low-temperature performance of Mn modified Cu-Beta zeolite catalyst for NH3-SCR, Fuel 361 (2024) 130694. [23] A.Y. Wang, Y.L. Wang, E.D. Walter, N.M. Washton, Y.L. Guo, G.Z. Lu, C.H.F. Peden, F. Gao, NH3-SCR on Cu, Fe and Cu+Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects, Catal. Today 320 (2019) 91-99. [24] J. Li, K. Fan, Y.L. Shan, S. Wang, J. Zhang, W.B. Fan, H. He, X.Y. Zhao, X.J. Meng, F.S. Xiao, Superior performance in passive NOx adsorption over an Al-rich Beta zeolite supported palladium, Appl. Catal. B Environ. 339 (2023) 123127. [25] X.F. Wang, Y. Xu, Z. Zhao, J.B. Liao, C. Chen, Q.B. Li, Recent progress of metal-exchanged zeolites for selective catalytic reduction of NOx with NH3 in diesel exhaust, Fuel 305 (2021) 121482. [26] D. Yu, C. Peng, Y. Ren, L.Y. Wang, C.L. Zhang, X.Q. Fan, X.H. Yu, Z. Zhao, Low temperature oxidation of diesel soot particles over one-dimensional 2×3 tunnel-structured Na2Mn5O10 catalysts, Appl. Catal. B Environ. Energy 344 (2024) 123614. [27] M. Saeidi, M. Hamidzadeh, Co-doping a metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) on Mn/ZSM-5 catalyst and its effect on the catalytic reduction of nitrogen oxides with ammonia, Res. Chem. Intermed. 43 (4) (2017) 2143-2157. [28] Y.H. Qiao, Z.Z. Guan, M.Y. Zhang, G. Chen, S.F. Zhou, H.L. Liu, J. Wu, R.T. Guo, W.G. Pan, F.Q. Li, P. He, Promoting effect of Cu and Mn doping on the Fe/ZSM-5 catalyst for selective catalytic reduction of NO with NH3, Fuel 357 (2024) 129947. [29] R. Tu, W. Lv, Y. Sun, Y.J. Wu, Y.W. Wu, X.D. Fan, E.C. Jiang, Q. Lu, X.W. Xu, Ru-RuO2-Nb2O5/Hβ zeolite catalyst for high-active hydrogenation of lignin derivatives at room temperature, Chem. Eng. J. 453 (2023) 139718. [30] A.M. Frey, S. Mert, J. Due-Hansen, R. Fehrmann, C.H. Christensen, Fe-BEA zeolite catalysts for NH3-SCR of NOx, Catal. Lett. 130 (1) (2009) 1-8. [31] G. Delahay, D. Valade, A. Guzman-Vargas, B. Coq, Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods, Appl. Catal. B Environ. 55 (2) (2005) 149-155. [32] Y. Xia, W.C. Zhan, Y. Guo, Y.L. Guo, G.Z. Lu, Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: Influence of Fe content, Chin. J. Catal. 37 (12) (2016) 2069-2078. [33] A. Bellmann, H. Atia, U. Bentrup, A. Bruckner, Mechanism of the selective reduction of NOx by methane over Co-ZSM-5, Appl. Catal. B Environ. 230 (2018) 184-193. [34] Kostyniuk, D. Key, M. Mdleleni, 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance, J. Energy Inst. 93 (2020) 552-564. [35] L.Y. Wang, Y. Ren, X.H. Yu, C. Peng, D. Yu, C.M. Zhong, J. Hou, C.Y. Yin, X.Q. Fan, Z. Zhao, J. Liu, Y.C. Wei, Novel preparation method, catalytic performance and reaction mechanisms of PrxMn1-xOδ/3DOM ZSM-5 catalysts for the simultaneous removal of soot and NO X, J. Catal. 417 (2023) 226-247. [36] D. Yu, Y. Ren, X.H. Yu, X.Q. Fan, L.Y. Wang, R.D. Wang, Z. Zhao, K. Cheng, Y.S. Chen, Z. Sojka, A. Kotarba, Y.C. Wei, J. Liu, Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2-xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2, Appl. Catal. B Environ. 285 (2021) 119779. [37] Y.J. Wang, L.J. Xie, F.D. Liu, W.Q. Ruan, Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3, J. Environ. Sci. 81 (2019) 195-204. [38] X.Y. Wang, Y.M. Sun, F.Y. Han, Y.Q. Zhao, Effect of Fe addition on the structure and SCR reactivity of one-pot synthesized Cu-SSZ-13, J. Environ. Chem. Eng. 10 (3) (2022) 107888. [39] H.W. Zhao, H.S. Li, X.H. Li, M.K. Liu, Y.D. Li, The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3, Catal. Today 297 (2017) 84-91. [40] N.D. Wasalathanthri, T.M. SantaMaria, D.A. Kriz, S.L. Dissanayake, C.H. Kuo, S. Biswas, S.L. Suib, Mesoporous manganese oxides for NO2 assisted catalytic soot oxidation, Appl. Catal. B Environ. 201 (2017) 543-551. [41] N.Q. Zhang, L.C. Li, R. Wu, L.Y. Song, L.R. Zheng, G.Z. Zhang, H. He, Correction: Activity enhancement of Pt/MnOx catalyst by novel β-MnO2 for low-temperature CO oxidation: study of the CO-O2 competitive adsorption and active oxygen species, Catal. Sci. Technol. 10 (20) (2020) 7067. [42] Zhang, M. Li, X. Wang, L. Fan, Y. Dong, Y. Zhu, Excellent oxidation activity of toluene over core-shell structure Mn2O3@MnO2: role of surface lattice oxygen and Mn species, J. Chem. Technol. Biotechnol. 97 (2021) 1138-1148. [43] X.H. Feng, J.W. Xu, X.L. Xu, S.J. Zhang, J. Ma, X.Z. Fang, X. Wang, Unraveling the principles of lattice disorder degree of Bi2B2O7 (B = Sn, Ti, Zr) compounds on activating gas phase O2 for soot combustion, ACS Catal. 11 (19) (2021) 12112-12122. [44] L.J. He, Y. Zhang, Y.C. Zang, C.X. Liu, W.C. Wang, R. Han, N. Ji, S.T. Zhang, Q.L. Liu, Promotion of A-site Ag-doped perovskites for the catalytic oxidation of soot: synergistic catalytic effect of dual active sites, ACS Catal. 11 (22) (2021) 14224-14236. [45] T.T. Gu, Y. Liu, X.L. Weng, H.Q. Wang, Z.B. Wu, The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3, Catal. Commun. 12 (4) (2010) 310-313. [46] L. Rodriguez-Gonzalez, F. Hermes, M. Bertmer, E. Rodriguez-Castellon, A. Jimenez-Lopez, U. Simon, The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy, Appl. Catal. A Gen. 328 (2) (2007) 174-182. [47] Z. Chen, C. Fan, L. Pang, S.J. Ming, W. Guo, P. Liu, H.P. Chen, T. Li, One-pot synthesis of high performance Cu-SAPO-18 catalyst for NO reduction by NH3-SCR: Influence of silicon content on the catalytic properties of Cu-SAPO-18, Chem. Eng. J. 348 (2018) 608-617. [48] G. Li, B.D. Wang, H.Y. Wang, J. Ma, W.Q. Xu, Y.L. Li, Y.F. Han, Q. Sun, Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR, Catal. Commun. 108 (2018) 82-87. [49] S.Z. Xie, L.L. Li, L.J. Jin, Y.H. Wu, H. Liu, Q.J. Qin, X.L. Wei, J.X. Liu, L.H. Dong, B. Li, Low temperature high activity of M (M = Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism, Appl. Surf. Sci. 515 (2020) 146014. [50] L.J. Jiang, Y. Liang, W.Z. Liu, H.L. Wu, T. Aldahri, D.S. Carrero, Q.C. Liu, Synergistic effect and mechanism of FeOx and CeOx co-doping on the superior catalytic performance and SO2 tolerance of Mn-Fe-Ce/ACN catalyst in low-temperature NH3-SCR of NO X, J. Environ. Chem. Eng. 9 (6) (2021) 106360. [51] S. Liu, X.D. Wu, D. Weng, M. Li, R. Ran, Roles of acid sites on Pt/H-ZSM5 catalyst in catalytic oxidation of diesel soot, ACS Catal. 5 (2) (2015) 909-919. [52] J.X. Liu, H.F. Cheng, H.L. Zheng, L. Zhang, B. Liu, W.Y. Song, J. Liu, W.S. Zhu, H.M. Li, Z. Zhao, Insight into the potassium poisoning effect for selective catalytic reduction of NOx with NH3 over Fe/beta, ACS Catal. 11 (24) (2021) 14727-14739. [53] L. Rui, T. Yue, Y. Zheng, G. Li, J. Gao, W. Zhang, J. Wang, M. Ma, W. Su, Mechanistic insights into the enhanced low-temperature activity of Cu-SSZ-13 by MnOx-CeO2 modification for standard SCR reaction and fast SCR reactions, Fuel 371 (2024) 131747. [54] G.L. Chen, X.L. Si, J.S. Yu, H.Y. Bai, X.H. Zhang, Doping nano-Co3O4 surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes, Appl. Surf. Sci. 330 (2015) 191-199. [55] A. Mekki, A. Mokhtar, M. Hachemaoui, M. Beldjilali, M.F. Meliani, H.H. Zahmani, S. Hacini, B. Boukoussa, Fe and Ni nanoparticles-loaded zeolites as effective catalysts for catalytic reduction of organic pollutants, Microporous Mesoporous Mater. 310 (2021) 110597. [56] Z.H. Wang, X. Xu, Y. Zhu, H. He, N.L. Wang, X.B. Yang, L.C. Liu, One-pot synthesis of hierarchical MnCu-SSZ-13 catalyst with excellent NH3-SCR activity at low temperatures, Microporous Mesoporous Mater. 333 (2022) 111720. [57] F.Y. Liu, H.P. Zhang, Y. Yan, T. Wang, Preparation and characterization of Cu and Mn modified beta zeolite membrane catalysts for toluene combustion, Mater. Chem. Phys. 241 (2020) 122322. [58] Fan, Z. Wu, Z. Li, Z. Qin, H. Zhu, M. Dong, J. Wang, W. Fan, Controllable preparation of ultrafine Co3O4 nanoparticles on H-ZSM-5 with superior catalytic performance in lean methane combustion, Fuel 334 (2023) 126815. [59] X.H. Yu, L.Y. Wang, M.Z. Chen, X.Q. Fan, Z. Zhao, K. Cheng, Y.S. Chen, Z. Sojka, Y.C. Wei, J. Liu, Enhanced activity and sulfur resistance for soot combustion on three-dimensionally ordered macroporous-mesoporous MnxCe1-xOδ/SiO2 catalysts, Appl. Catal. B Environ. 254 (2019) 246-259. [60] T.X. Zhou, L. Liu, B.D. Wang, S.G. Ma, Z.D. Dai, W.J. Jiang, X. Jiang, Insights into the enhanced activity and SO2 resistance of air oxidation treated Mn-Fe doped biochar catalyst in the low-temperature catalytic reduction of NOx with NH3, Fuel 357 (2024) 129989. [61] Y.J. Pu, X.Y. Xie, W.J. Jiang, L. Yang, X. Jiang, L. Yao, Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: a review, Chin. Chem. Lett. 31 (10) (2020) 2549-2555. [62] Peng, Y. Ren, D. Yu, L. Wang, C. Zhang, X. Fan, X. Yu, Z. Zhao, Y. Wei, J. Liu, K-modified MnOδ catalysts with tunnel structure and layered structure: Facile preparation and catalytic performance for soot combustion, Nano Res. 16 (2023) 6187-6199. |