[1] X. Wang, X.H. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks, Nano-Micro Lett. 13 (1) (2021) 64. [2] Y.F. Tao, C.S. Deng, J. Long, J.W. Liu, X.J. Wang, X.X. Song, C. Lu, J.J. Yang, H. Hao, C.B. Wang, W.G. Zhang, Multiprocess laser lifting-off for nanostructured semiconductive hydrogels, Adv. Mater. Interfac. 9 (1) (2022) 2101250. [3] L. Yang, N. Yi, J. Zhu, Z. Cheng, X.Y. Yin, X.Y. Zhang, H.L. Zhu, H.Y. Cheng, Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities, J. Mater. Chem. A 8 (14) (2020) 6487-6500. [4] S. Mousavi, D. Howard, F.H. Zhang, J.S. Leng, C.H. Wang, Direct 3D printing of highly anisotropic, flexible, constriction-resistive sensors for multidirectional proprioception in soft robots, ACS Appl. Mater. Interfaces 12 (13) (2020) 15631-15643. [5] X.K. Zhang, J. Chai, Y.F. Zhan, D.F. Cui, X. Wang, L.B. Gao, Design, fabrication, and application of large-area flexible pressure and strain sensor arrays: a review, Micromachines (Basel) 16 (3) (2025) 330. [6] S.L. Li, T.Y. Zhou, M.Z. Liu, Q.M. Zhao, Y. Liu, An intelligent non-invasive blood pressure monitoring system based on a novel polyvinylidene fluoride piezoelectric thin film, Micromachines (Basel) 15 (5) (2024) 659. [7] G. Ge, Y. Lu, X.Y. Qu, W. Zhao, Y.F. Ren, W.J. Wang, Q. Wang, W. Huang, X.C. Dong, Muscle-inspired self-healing hydrogels for strain and temperature sensor, ACS Nano 14 (1) (2020) 218-228. [8] W.B. Ying, Z. Yu, D.H. Kim, K.J. Lee, H. Hu, Y. Liu, Z. Kong, K. Wang, J. Shang, R. Zhang, J. Zhu, R.W. Li, Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin, ACS Appl. Mater. Interfaces 12 (9) (2020) 11072-11083. [9] C. Wang, K. Hu, C.C. Zhao, Y. Zou, Y. Liu, X.C. Qu, D.J. Jiang, Z. Li, M.R. Zhang, Z. Li, Customization of conductive elastomer based on PVA/PEI for stretchable sensors, Small (Weinh.) 16 (7) (2020) e1904758. [10] S.M. Lee, J. Jang, W. Park, A tactile sensor for recognition of softness using interlocking structure of carbon nanoparticle- polydimethylsiloxane composite, Sens. Acutators Rep. 9 (2025) 100289. [11] M.H. Li, D.L. Jiang, X.W. Xuan, H.J. Li, H.Z. Li, M.J. Li, Wireless 2.4 GHz patch antenna sensor based on boron-doped diamond and polydimethylsiloxane for detection of perfluorooctanoic acid in marine air, Sensor. Actuator. B Chem. 432 (2025) 137444. [12] L.W. Lin, L. Wang, B. Li, J.C. Luo, X.W. Huang, Q. Gao, H.G. Xue, J.F. Gao, Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors, Chem. Eng. J. 385 (2020) 123391. [13] L.Y. Wang, X.Y. Yang, W.A. Daoud, High power-output mechanical energy harvester based on flexible and transparent Au nanoparticle-embedded polymer matrix, Nano Energy 55 (2019) 433-440. [14] C.E. Boott, M.A. Soto, W.Y. Hamad, M.J. MacLachlan, Shape-memory photonic thermoplastics from cellulose nanocrystals, Adv. Funct. Mater. 31 (43) (2021) 2103268. [15] G. Jimenez, S. Venkateswaran, E. Lopez-Ruiz, M. Peran, S. Pernagallo, J.J. Diaz-Monchon, R.F. Canadas, C. Antich, J.M. Oliveira, A. Callanan, R. Walllace, R.L. Reis, E. Montanez, E. Carrillo, M. Bradley, J.A. Marchal, A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage, Acta Biomater. 90 (2019) 146-156. [16] Y.H. Zhang, L. Yuan, Q.B. Guan, G.Z. Liang, A.J. Gu, Developing self-healable and antibacterial polyacrylate coatings with high mechanical strength through crosslinking by multi-amine hyperbranched polysiloxane via dynamic vinylogous urethane, J. Mater. Chem. A 5 (32) (2017) 16889-16897. [17] Y.S. Li, C.X. Hu, J. Lan, B. Yan, Y.L. Zhang, L.Y. Shi, R. Ran, Hydrogel-based temperature sensor with water retention, frost resistance and remoldability, Polymer 186 (2020) 122027. [18] P. He, J.Y. Wu, X.F. Pan, L.H. Chen, K. Liu, H.L. Gao, H. Wu, S.L. Cao, L.L. Huang, Y.H. Ni, Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications, J. Mater. Chem. A 8 (6) (2020) 3109-3118. [19] Y.F. Zhang, M.M. Guo, Y. Zhang, C.Y. Tang, C. Jiang, Y.Q. Dong, W.C. Law, F.P. Du, Flexible, stretchable and conductive PVA/PEDOT: PSS composite hydrogels prepared by SIPN strategy, Polym. Test. 81 (2020) 106213. [20] S. Xia, S.X. Song, G.H. Gao, Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion, Chem. Eng. J. 354 (2018) 817-824. [21] K. Yang, C.H. Bai, B.Y. Liu, Z.T. Liu, X.J. Cui, Self-powered, non-toxic, recyclable thermogalvanic hydrogel sensor for temperature monitoring of edibles, Micromachines (Basel) 14 (7) (2023) 1327. [22] K. Chen, W.Z. Lai, W.C. Xiao, L.M. Li, S.J. Huang, X.F. Xiao, Low-temperature adaptive dual-network MXene nanocomposite hydrogel as flexible wearable strain sensors, Micromachines (Basel) 14 (8) (2023) 1563. [23] T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare, Adv. Mater. 28 (22) (2016) 4338-4372. [24] J.Q. Zhang, L.J. Wan, Y. Gao, X.L. Fang, T. Lu, L.K. Pan, F.Z. Xuan, Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin, Adv. Electron. Mater. 5 (7) (2019) 1900285. [25] T.X. Shang, Z.F. Lin, C.S. Qi, X.C. Liu, P. Li, Y. Tao, Z.T. Wu, D.W. Li, P. Simon, Q.H. Yang, 3D macroscopic architectures from self-assembled MXene hydrogels, Adv. Funct. Mater. 29 (33) (2019) 1903960. [26] Q. Wu, Y.B. Xie, Hydrogel bonding interface-induced all-in-one supercapacitors: a review, J. Energy Storage 104 (2024) 114480. [27] U. Jeong, S. Yoon, S. Park, T.J. Jeon, S.M. Kim, 3D artificial skin platform for investigating pregnancy-related skin pigmentation, Micromachines (Basel) 15 (4) (2024) 511. [28] L.Q. Li, X. Chen, J.M. Torkelson, Reprocessable polymer networks via thiourethane dynamic chemistry: recovery of cross-link density after recycling and proof-of-principle solvolysis leading to monomer recovery, Macromolecules 52 (21) (2019) 8207-8216. [29] Y.L. Lin, H.W. Hu, P. Yi, S. Sun, Y.H. Li, X.T. Liu, G.J. Li, Zwitterionic hydrogels formed via quadruple hydrogen-bonds with ultra-fast room-temperature self-healing ability, Mater. Lett. 269 (2020) 127665. [30] Y. Peng, Y. Yang, Q. Wu, S.X. Wang, G.S. Huang, J.R. Wu, Strong and tough self-healing elastomers enabled by dual reversible networks formed by ionic interactions and dynamic covalent bonds, Polymer 157 (2018) 172-179. [31] X. Sun, S.S. He, Z.H. Qin, J.J. Li, F.L. Yao, Fast self-healing zwitterion nanocomposite hydrogel for underwater sensing, Compos. Commun. 26 (2021) 100784. [32] N.B. Li, J.Y. Chen, J.L. Li, H.L. Wu, Z.Y. Li, X.M. He, L. Cai, Facile construction of versatile cotton fabrics with robust hydrophobicity, self-cleaning and oil-water separation, Fibres. Polym. 25 (2) (2024) 565-575. [33] D.G. Gao, Y. Fan, B. Lyu, J.Z. Ma, J.H. Zhang, Polyacrylate/Prussian blue nanoparticles composite emulsion applied to photothermal self-healing leather coatings, Prog. Org. Coating 183 (2023) 107753. [34] B.Q. Zhao, X.L. He, W.J. Li, H. Zhang, H. Liu, H. Qiu, P. Gu, K.L. Chen, Multi-touch microcapsules/silicone-polyacrylate hybrid hydrogels with precise self-healing ability and their self-powered sensing applications in emergency rescue, Chem. Eng. J. 500 (2024) 157149. [35] D.B. Han, S. Shanmugam, Active material crossover suppression with bi-ionic transportability by an amphoteric membrane for Zinc-Bromine redox flow battery, J. Power Sources 540 (2022) 231637. [36] H. Li, J.H. Zhou, J.R. Yu, J.J. Zhao, Light-activated cellulose nanocrystals/fluorinated polyacrylate-based waterborne coating: facile preparation, mechanical and self-healing behavior, Int. J. Biol. Macromol. 249 (2023) 126062. [37] J.H. Zhang, H. Liu, Y.X. Ma, H. Wang, C.F. Chen, G.L. Yan, M.W. Tian, Y.Z. Long, X. Ning, B.W. Cheng, Construction of dual-interface proton channels based on γ-polyglutamic acid@cellulose whisker/PVDF nanofibers for proton exchange membranes, J. Power Sources 548 (2022) 231981. [38] J.F. Xu, S. Dong, P. Li, W.H. Li, F. Tian, J.R. Wang, Q.Q. Cheng, Z.Y. Yue, H. Yang, Novel ether-free sulfonated poly(biphenyl) tethered with tertiary amine groups as highly stable amphoteric ionic exchange membranes for vanadium redox flow battery, Chem. Eng. J. 424 (2021) 130314. [39] B. Zhu, J.Y. Wu, D.S. Liu, Y.K. Yan, X.X. Yang, Y.X. Wang, C.C. Bai, D.L. Hu, Z.X. Zhang, P. Jiang, X.L. Wang, Sculpting mechanical properties of hydrogels by patterning seamlessly interlocked stiff skeleton, Adv. Funct. Mater. 35 (12) (2025) 2417477. [40] J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels, Nature 489 (7414) (2012) 133-136. [41] X. Yao, S.F. Zhang, L.W. Qian, N. Wei, V. Nica, S. Coseri, F. Han, Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors, Adv. Funct. Mater. 32 (33) (2022) 2204565. [42] Y.F. Zhang, S.L. Ye, Y.L. Yang, R.B. He, J. Lin, Z.Y. Hong, C.H. Yuan, L.Z. Dai, A water state manipulation strategy for ultra-stiff yet highly sensitive hydrogels, Adv. Funct. Mater. (2025) 2424535. [43] L.B. Li, X.C. Wang, X.Y. You, P. Rao, X.H. Liu, D.T. Zhang, W.L. Zhang, W. Wang, L. Xing, J. Li, H.J. Zhang, Super stretchable gelatin/poly (ionic liquid) hydrogel enabled by weak hydrogen bonds and microphase separation towards multifunctional and self-powered sensors, Nano Energy 138 (2025) 110875. [44] Z.P. You, Y. Dong, X.H. Li, P. Yang, M. Luo, Z.Q. Zhu, L.Y. Wu, X.Y. Zhou, M.Z. Chen, One-pot synthesis of multi-functional cellulose-based ionic conductive organohydrogel with low-temperature strain sensitivity, Carbohydr. Polym. 251 (2021) 117019. [45] B. Wang, L. Dai, L.A. Hunter, L. Zhang, G. Yang, J. Chen, X. Zhang, Z. He, Y. Ni, A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications, Carbohydr. Polym. 268 (2021) 118210. [46] H.L. Cai, D.Z. Zhang, H. Zhang, M.C. Tang, Z.Y. Xu, H. Xia, K.S. Li, J. Wang, Trehalose-enhanced ionic conductive hydrogels with extreme stretchability, self-adhesive and anti-freezing abilities for both flexible strain sensor and all-solid-state supercapacitor, Chem. Eng. J. 472 (2023) 144849. [47] J.M. Shen, L. Lu, R.T. He, Q.C. Ye, C. Yuan, L. Guo, M. Zhao, B. Cui, Starch/ionic liquid/hydrophobic association hydrogel with high stretchability, fatigue resistance, self-recovery and conductivity for sensitive wireless wearable sensors, Carbohydr. Polym. 346 (2024) 122608. [48] W. Chen, H.Y. Shen, Y.F. Gong, P. Li, C.L. Cheng, Anion exchange membranes with efficient acid recovery obtained by quaternized poly epichlorohydrin and polyvinyl alcohol during diffusion dialysis, J. Membr. Sci. 674 (2023) 121514. [49] X.H. Cen, Z.L. Cao, L.M. Lin, Z.Z. Wang, Construction of a mesoporous silica/phytate-based flame-retardant hybrid and its modified epoxy resin and cyanate ester copolymer with simultaneously improved flame retardancy, smoke suppression and dielectric properties, Polymer 308 (2024) 127418. [50] X.D. Bao, X.F. Li, Y.P. Zhong, S.F. Fan, Z.R. Huang, X. Guan, X.Y. Chen, J.G. Lin, Enhancing flame-retardant and smoke-suppression properties of wooden materials with phytic acid-added composite flame retardants, Ind. Crops Prod. 220 (2024) 119223. [51] H.S. Guo, Y. Han, W.Q. Zhao, J. Yang, L. Zhang, Universally autonomous self-healing elastomer with high stretchability, Nat. Commun. 11 (1) (2020) 2037. [52] X.J. Zhang, K. Wang, J.Y. Hu, Y.C. Zhang, Y. Dai, F. Xia, Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels, J. Mater. Chem. A 8 (47) (2020) 25390-25401. [53] J. Liu, Z.L. Rao, Y.T. Dong, X.J. Zheng, K.Y. Tang, Strong and conductive gelatin hydrogels enhanced by Hofmeister effect and genipin crosslinking for sensing applications, Eur. Polym. J. 222 (2025) 113583. [54] Y. Oh, J. Choi, J. Shim, S.Y. Kim, Silver nanowire/partially reduced graphene oxide-based nanocomposite hydrogel system for highly sensitive wearable strain sensor applications, J. Ind. Eng. Chem. (2025), https://doi.org/10.1016/j.jiec.2025.04.035. [55] Y.Z. Zhou, Z.B. Xie, F.Q. Wu, J.L. Qin, X.H. Zhang, J. Zhang, X.S. Ma, L.R. Fan, X. Wang, J.J. Wang, T.F. Tan, C.H. Lu, Facile fabrication and characterization of double network starch/PVA/NaCl composite hydrogel for flexible strain sensor, React. Funct. Polym. 208 (2025) 106163. [56] L.S. Kong, Z.J. Gao, X.Y. Li, G.H. Gao, An amylopectin-enabled skin-mounted hydrogel wearable sensor, J. Mater. Chem. B 9 (4) (2021) 1082-1088. [57] Q.Y. Xu, M.H. Hou, L.F. Wang, X.P. Zhang, L.F. Liu, Anti-bacterial, anti-freezing starch/ionic liquid/PVA ion-conductive hydrogel with high performance for multi-stimulation sensitive responsive sensors, Chem. Eng. J. 477 (2023) 147065. [58] Y.L. Wang, H.L. Huang, J.L. Wu, L. Han, Z.L. Yang, Z.C. Jiang, R. Wang, Z.J. Huang, M. Xu, Ultrafast self-healing, reusable, and conductive polysaccharide-based hydrogels for sensitive ionic sensors, ACS Sustainable Chem. Eng. 8 (50) (2020) 18506-18518. [59] L. He, D.Z. Ye, S. Weng, X.C. Jiang, A high-strength, environmentally stable, self-healable, and recyclable starch/PVA organohydrogel for strain sensor, Eur. Polym. J. 181 (2022) 111650. [60] H. Liu, Y.Z. Ni, J. Hu, Y.M. Jin, P. Gu, H. Qiu, K.L. Chen, Self-healing and antibacterial essential oil-loaded mesoporous silica/polyacrylate hybrid hydrogel for high-performance wearable body-strain sensing, ACS Appl. Mater. Interfaces 14 (18) (2022) 21509-21520. [61] L.H. Jia, J.R. Jiang, A.B. Ren, Z.G. Wei, T. Xiang, S.B. Zhou, Ultra-fast cryogenic self-healing ionic hydrogel for flexible wearable bioelectronics, Chem. Eng. J. 495 (2024) 153734. [62] Z.G. Wei, L.H. Jia, J.Y. Yu, H.R. Xu, X. Guo, T. Xiang, S.B. Zhou, Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors, Mater. Horiz. 12 (8) (2025) 2604-2618. |