[1] D.F. Rodriguez-Vallejo, G. Guillen-Gosalbez, B. Chachuat, What is the true cost of producing propylene from methanol? the role of externalities, ACS Sustainable Chem. Eng. 8 (8) (2020) 3072-3081. [2] I. Amghizar, L.A. Vandewalle, K.M. Van Geem, G.B. Marin, New trends in olefin production, Engineering 3 (2) (2017) 171-178. [3] N. Hadi, A. Niaei, S.R. Nabavi, R. Alizadeh, M.N. Shirazi, B. Izadkhah, An intelligent approach to design and optimization of M-Mn/H-ZSM-5 (M: Ce, Cr, Fe, Ni) catalysts in conversion of methanol to propylene, J. Taiwan Inst. Chem. Eng. 59 (2016) 173-185. [4] N. Hadi, A. Farzi, R. Alizadeh, A. Niaei, Metal-substituted sponge-like MFI zeolites as high-performance catalysts for selective conversion of methanol to propylene, Microporous Mesoporous Mater. 306 (2020) 110406. [5] M. Ye, P. Tian, Z.M. Liu, DMTO: a sustainable methanol-to-olefins technology, Engineering 7 (1) (2021) 17-21. [6] G.R.K. Zadeh, M. Panahi, E. Yasari, A. Rafiee, M. Ali Fanaei, H. Alaei, Plantwide simulation and operation of a methanol to propylene (MTP) process, J. Taiwan Inst. Chem. Eng. 153 (2023) 105204. [7] O. Singh, H.S. Khairun, H. Joshi, B. Sarkar, N.K. Gupta, Advancing light olefin production: Exploring pathways, catalyst development, and future prospects, Fuel 379 (2025) 132992. [8] E. Asghari, R. Alizadeh, H. Maghsoudi, Remarkable catalytic performance of newly synthesized H-SSZ-23 zeolite in methanol to olefin process, Microporous Mesoporous Mater. 392 (2025) 113628. [9] S. Aghamohammadi, M. Haghighi, M. Charghand, Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance, Mater. Res. Bull. 50 (2014) 462-475. [10] N. Hadi, A. Niaei, R. Alizadeh, J. Raeisipour, Durable and highly selective tungsten-substituted MFI metallosilicate catalysts for the methanol-to-propylene process by designing a novel feed-supply technique, Comptes Rendus Chim. 21 (5) (2018) 523-540. [11] Z.S.B. Sousa, A.S. Luna, F.M.Z. Zotin, C.A. Henriques, Methanol-to-olefin conversion over ZSM-5: influence of zeolite chemical composition and experimental conditions on propylene formation, Chem. Eng. Commun. 209 (5) (2022) 623-635. [12] W. Zhang, X.H. Wang, Z.W. Wu, Z.K. Li, X.J. Yong, Y.L. Gu, J.G. Wang, Controlling the morphologies and crystal growth orientations of H-ZSM-5: their impact on the structure-diffusion-performance relationship in the methanol-to-propylene reaction, Catal. Sci. Technol. 14 (7) (2024) 1760-1774. [13] W. Zhang, K.Z. Wang, X.H. Gao, X.J. Yong, Y.L. Gu, Synergistic effect of structure and morphology of ZSM-5 catalysts on the transformation of methanol to propylene, Catalysts 14 (1) (2024) 67. [14] N. Hadi, A. Niaei, S.R. Nabavi, M. Navaei Shirazi, R. Alizadeh, Effect of second metal on the selectivity of Mn/H-ZSM-5 catalyst in methanol to propylene process, J. Ind. Eng. Chem. 29 (2015) 52-62. [15] N. Hadi, R. Alizadeh, A. Niaei, Selective production of propylene from methanol over nanosheets of metal-substituted MFI zeolites, J. Ind. Eng. Chem. 54 (2017) 82-97. [16] M.Y. Xia, Q.X. Tong, H. Sun, Y.X. Sun, S. Han, Q.G. Li, A theoretical study on the methanol to propene mechanism catalyzed by a phosphorus-modified acidic FAU zeolite, New J. Chem. 47 (4) (2023) 1740-1759. [17] L.N. Zhang, L. Yang, R.Z. Liu, X. Shao, W.L. Dai, G.J. Wu, N.J. Guan, Z.H. Guo, W.P. Zhu, L.D. Li, Design of plate-like H [Ga] MFI zeolite catalysts for high-performance methanol-to-propylene reaction, Microporous Mesoporous Mater. 333 (2022) 111767. [18] Y.F. Xue, J.F. Li, P.F. Wang, X.J. Cui, H.Y. Zheng, Y.L. Niu, M. Dong, Z.F. Qin, J.G. Wang, W.B. Fan, Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins, Appl. Catal. B Environ. 280 (2021) 119391. [19] H. Khezri, A. Izadbakhsh, A.A. Izadpanah, Promotion of the performance of La, Ce and Ca impregnated HZSM-5 nanoparticles in the MTO reaction, Fuel Process. Technol. 199 (2020) 106253. [20] J.S. Luo, T.C. Xiao, W. Wen, J. Bao, C.Y. Liu, Y. Pan, Effects of acid sites and formaldehyde decomposition on the catalyst lifetime for methanol-to-olefins over Ca-modified HZSM-5, ACS Catal. 14 (18) (2024) 14078-14088. [21] Y.S. Yang, C. Sun, J.M. Du, Y.H. Yue, W.M. Hua, C.L. Zhang, W. Shen, H.L. Xu, The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction, Catal. Commun. 24 (2012) 44-47. [22] F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction, Microporous Mesoporous Mater. 203 (2015) 41-53. [23] Z.J. Hu, H.B. Zhang, L. Wang, H.X. Zhang, Y.H. Zhang, H.L. Xu, W. Shen, Y. Tang, Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction, Catal. Sci. Technol. 4 (9) (2014) 2891-2895. [24] F. Dalirian, M. Rostamizadeh, R. Alizadeh, High-efficient hierarchical [B]-ZSM-5 catalyst by simultaneously using of CTAB surfactant and boron promoter for methanol to olefins reaction, Res. Chem. Intermed. 47 (8) (2021) 3201-3215. [25] A.N. Xu, H.F. Ma, H.T. Zhang, D.Y. Weiyong, D.Y. Fang, Effect of boron on ZSM-5 catalyst for methanol to propylene conversion, pjct 15 (4) (2013) 95-101. [26] C.Y. Dai, J.J. Li, A.F. Zhang, C.H. Nie, C.S. Song, X.W. Guo, Precise control of the size of zeolite B-ZSM-5 based on seed surface crystallization, RSC Adv. 7 (60) (2017) 37915-37922. [27] H. Roohollahi, M. Hamidzadeh, F. Yaripour, S. Shifteh, Seed-assisted H-[B]-ZSM-5 borosilicate: Investigating the effect of promoter level on catalytic production of propylene from methanol, Catal. Commun. 183 (2023) 106782. [28] J.H. Gao, K.M. Ji, H. Zhou, J.Y. Xun, Z.H. Liu, K. Zhang, P. Liu, Synthesis and characterization of BZSM-5 and its catalytic performance in the methanol to hydrocarbons reaction, Chin. J. Chem. Eng. 35 (2021) 196-203. [29] P. Sadeghpour, M. Haghighi, K. Khaledi, High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol, Mater. Chem. Phys. 217 (2018) 133-150. [30] B. Bozorgi, J. Ahmadpour, A. Mohammad-khah, F. Yaripour, H.Z.J.S.S.S. Mousavi, Preparation of H-[B]-ZSM-5 zeolites by hydrothermal method as a highly stable and selective catalyst for methanol to propylene (MTP) conversion, Solid State Sciences 147 (2024) 107382. [31] S. Ivanova, B. Louis, B. Madani, J.P. Tessonnier, M.J. Ledoux, C. Pham-Huu, ZSM-5 coatings on β-SiC monoliths: possible new structured catalyst for the methanol-to-olefins process, J. Phys. Chem. C 111 (11) (2007) 4368-4374. [32] T. Omojola, N. Cherkasov, E.V. Rebrov, D.B. Lukyanov, S.P. Perera, Zeolite minilith: a unique structured catalyst for the methanol to gasoline process, Chem. Eng. Process. Process. Intensif. 131 (2018) 137-143. [33] S. Govender, H. Friedrich, Monoliths: a review of the basics, preparation methods and their relevance to oxidation, Catalysts 7 (2) (2017) 62. [34] G.A. Tafete, N.G. Habtu, Reactor configuration, operations and structural catalyst design in process intensification of catalytic reactors: a review, Chem. Eng. Process. Process. Intensif. 184 (2023) 109290. [35] Y.L. Jiao, X.L. Fan, M. Perdjon, Z.M. Yang, J.S. Zhang, Vapor-phase transport (VPT) modification of ZSM-5/SiC foam catalyst using TPAOH vapor to improve the methanol-to-propylene (MTP) reaction, Appl. Catal. A Gen. 545 (2017) 104-112. [36] Y.L. Jiao, S.J. Xu, C.H. Jiang, M. Perdjon, X.L. Fan, J.S. Zhang, MFI zeolite coating with intrazeolitic aluminum (acidic) gradient supported on SiC foams to improve the methanol-to-propylene (MTP) reaction, Appl. Catal. A Gen. 559 (2018) 1-9. [37] J. Lefevere, S. Mullens, V. Meynen, The impact of formulation and 3D-printing on the catalytic properties of ZSM-5 zeolite, Chem. Eng. J. 349 (2018) 260-268. [38] X. Li, F. Rezaei, A.A. Rownaghi, Methanol-to-olefin conversion on 3D-printed ZSM-5 monolith catalysts: Effects of metal doping, mesoporosity and acid strength, Microporous Mesoporous Mater. 276 (2019) 1-12. [39] X. Huang, X.G. Li, H. Li, W.D. Xiao, High-performance HZSM-5/cordierite monolithic catalyst for methanol to propylene reaction: a combined experimental and modelling study, Fuel Process. Technol. 159 (2017) 168-177. [40] M.A. Ali, N.A. Al-Baghli, M. Nisar, Z.O. Malaibari, A. Abutaleb, S. Ahmed, Selective production of propylene from methanol over monolith-supported modified ZSM-5 catalysts, Energy Fuels 33 (2) (2019) 1458-1466. [41] N. Zergani, A. Sari, Modeling and simulation analysis of methanol conversion to olefins (MTO): a critical comparison of a honeycomb monolith and a fixed-bed of cylindrical extruded HZSM-5 catalyst, Chem. Eng. Process. Process. Intensif. 167 (2021) 108537. [42] W.Y. Guo, W.D. Xiao, M. Luo, Comparison among monolithic and randomly packed reactors for the methanol-to-propylene process, Chem. Eng. J. 207 (2012) 734-745. [43] W.Y. Guo, W.Z. Wu, M. Luo, W.D. Xiao, Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process, Fuel Process. Technol. 108 (2013) 133-138. [44] X.D. Chen, X.G. Li, H. Li, J.J. Han, W.D. Xiao, Interaction between binder and high silica HZSM-5 zeolite for methanol to olefins reactions, Chem. Eng. Sci. 192 (2018) 1081-1090. [45] M.S. Beheshti, M. Behzad, J. Ahmadpour, H. Arabi, Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: Investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance, Microporous Mesoporous Mater. 291 (2020) 109699. [46] G.T. Whiting, F. Meirer, M.M. Mertens, A.J. Bons, B.M. Weiss, P.A. Stevens, E. De Smit, B.M. Weckhuysen, Binder effects in SiO2- and Al2O3-bound zeolite ZSM-5-based extrudates as studied by microspectroscopy, ChemCatChem 7 (8) (2015) 1312-1321. [47] S.D. Kim, S.C. Baek, Y.J. Lee, K.W. Jun, M.J. Kim, I.S. Yoo, Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether, Appl. Catal. A Gen. 309 (1) (2006) 139-143. [48] Y. Song, L.L. Zhang, G.D. Li, Y.S. Shang, X.M. Zhao, T. Ma, L.M. Zhang, Y.L. Zhai, Y.J. Gong, J. Xu, F. Deng, ZSM-5 extrudates modified with phosphorus as a super effective MTP catalyst: Impact of the acidity on binder, Fuel Process. Technol. 168 (2017) 105-115. [49] M. Rostamizadeh, A. Taeb, Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP), J. Ind. Eng. Chem. 27 (2015) 297-306. [50] P. Sadeghpour, M. Haghighi, High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion, Adv. Powder Technol. 29 (5) (2018) 1175-1188. [51] D.F. Wu, Q. Zhang, R. Gao, Mechanical stability of ZSM-5 zeolite washcoated cordierite monoliths, Chem. Eng. Res. Des. 168 (2021) 426-434. [52] G.Z. Liu, G.L. Zhao, F.X. Meng, S.D. Qu, L. Wang, X.W. Zhang, Catalytic cracking of supercritical n-dodecane over wall-coated HZSM-5 zeolites with micro- and nanocrystal sizes, Energy Fuels 26 (2) (2012) 1220-1229. [53] T.K.R. de Oliveira, M. Rosset, O.W. Perez-Lopez, Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts, Catal. Commun. 104 (2018) 32-36. [54] K. Khaledi, M. Haghighi, P. Sadeghpour, On the catalytic properties and performance of core-shell ZSM-5@MnO nanocatalyst used in conversion of methanol to light olefins, Microporous Mesoporous Mater. 246 (2017) 51-61. [55] F. Gorzin, F. Yaripour, Production of light olefins from methanol over modified H-ZSM-5: effect of metal impregnation in high-silica zeolite on product distribution, Res. Chem. Intermed. 45 (2) (2019) 261-285. [56] J.Y. Tao, J.L. Zhang, S.B. Fan, Q.X. Ma, X.H. Gao, T.S. Zhao, Effects of boron modification on the activity of HZSM-5 toward MTP, J. Fuel Chem. Technol. 48 (9) (2020) 1105-1111. [57] F.L. Bleken, S. Chavan, U. Olsbye, M. Boltz, F. Ocampo, B. Louis, Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity, Appl. Catal. A Gen. 447 (2012) 178-185. [58] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (4) (1985) 603-619. [59] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal. Today 41 (1-3) (1998) 207-219. [60] G.B. Liang, Y.H. Li, C. Yang, X. Hu, Q.Y. Li, W.B. Zhao, Synthesis of ZSM-5 zeolites from biomass power plant ash for removal of ionic dyes from aqueous solution: equilibrium isotherm, kinetic and thermodynamic analysis, RSC Adv. 11 (36) (2021) 22365-22375. [61] J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Perez-Ramirez, Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent, Chemistry 11 (17) (2005) 4983-4994. [62] A. Eleta, P. Navarro, L. Costa, M. Montes, Deposition of zeolitic coatings onto Fecralloy microchannels: Washcoating vs. In situ growing, Microporous Mesoporous Mater. 123 (1-3) (2009) 113-122. [63] N.L. Michels, S. Mitchell, J. Perez-Ramirez, Effects of binders on the performance of shaped hierarchical MFI zeolites in methanol-to-hydrocarbons, ACS Catal. 4 (8) (2014) 2409-2417. [64] K.Y. Lee, H.K. Lee, S.K. Ihm, Influence of catalyst binders on the acidity and catalytic performance of HZSM-5 zeolites for methanol-to-propylene (MTP) process: single and binary binder system, Top. Catal. 53 (3) (2010) 247-253. [65] P. Larkin, Infrared and Raman Spectroscopy, Elsevier, 2011. [66] G. Coudurier, C. Naccache, J.C. Vedrine, Uses of i.r. spectroscopy in identifying ZSM zeolite structure, J. Chem. Soc., Chem. Commun. (24) (1982) 1413. [67] M.S. Beheshti, J. Ahmadpour, M. Behzad, H. Arabi, Preparation of hierarchical H-[B]-ZSM-5 zeolites by a desilication method as a highly selective catalyst for conversion of methanol to propylene, Braz. J. Chem. Eng. 38 (1) (2021) 101-121. [68] J.C. Vedrine, A. Auroux, V. Bolis, P. Dejaifve, C. Naccache, P. Wierzchowski, E.G. Derouane, J.B. Nagy, J.P. Gilson, J.H.C. van Hooff, J.P. van den Berg, J. Wolthuizen, Infrared, microcalorimetric, and electron spin resonance investigations of the acidic properties of the H-ZSM-5 zeolite, J. Catal. 59 (2) (1979) 248-262. [69] Y.P. Zhang, M.G. Li, E.H. Xing, Y.B. Luo, X.T. Shu, Protective desilication of highly siliceous H-ZSM-5 by sole tetraethylammonium hydroxide for the methanol to propylene (MTP) reaction, RSC Adv. 8 (66) (2018) 37842-37854. [70] S. Ilias, R. Khare, A. Malek, A. Bhan, A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5, J. Catal. 303 (2013) 135-140. [71] M. Wen, X.Y. Wang, L.P. Han, J. Ding, Y. Sun, Y. Liu, Y. Lu, Monolithic metal-fiber@HZSM-5 core-shell catalysts for methanol-to-propylene, Microporous Mesoporous Mater. 206 (2015) 8-16. [72] M.A. Ali, S. Ahmed, N. Al-Baghli, Z. Malaibari, A. Abutaleb, A. Yousef, A comprehensive review covering conventional and structured catalysis for methanol to propylene conversion, Catal. Lett. 149 (12) (2019) 3395-3424. [73] A. Renken, L. Kiwi-Minsker, Microstructured catalytic reactors, Advances in Catalysis, Elsevier, 2010. |