[1] Y. Rogan, R. Malpass-Evans, M. Carta, M. Lee, J.C. Jansen, P. Bernardo, G. Clarizia, E. Tocci, K. Friess, M. Lanc, N.B. McKeown, A highly permeable polyimide with enhanced selectivity for membrane gas separations, J. Mater. Chem. A 2 (14) (2014) 4874-4877. [2] R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: An overview, Ind. Eng. Chem. Res. 47 (7) (2008) 2109 -2121. [3] B. Kraftschik, W.J. Koros, J.R. Johnson, O. Karvan, Dense film polyimide membranes for aggressive sour gas feed separations, J. Membr. Sci. 428 (2013) 608-619. [4] Z.E. Zhang, A. Fuoco, G.W. He, Membranes for gas separation, Membranes 11 (10) (2021) 755. [5] F.M. Benedetti, M.G. De Angelis, M.D. Esposti, P. Fabbri, A. Masili, A. Orsini, A. Pettinau, Enhancing the separation performance of glassy PPO with the addition of a molecular sieve (ZIF-8): Gas transport at various temperatures, Membranes 10 (4) (2020) 56. [6] R.J. Hou, S.J.D. Smith, K. Konstas, C.M. Doherty, C.D. Easton, J. Park, H. Yoon, H.T. Wang, B.D. Freeman, M.R. Hill, synergistically improved PIM-1 membrane gas separation performance by PAF-1 incorporation and UV irradiation, J. Mater. Chem. A 10 (18) (2022) 10107-10119. [7] S. Zhao, J. Liao, D. Li, X. Wang, N. Li, Blending of compatible polymer of intrinsic microporosity (PIM-1) with Troger's Base polymer for gas separation membranes, J. Membr. Sci. 566 (2018) 77-86. [8] R. Swaidan, M. Al-Saeedi, B. Ghanem, E. Litwiller, I. Pinnau, Rational design of intrinsically ultra microporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes, Macromolecules 47 (15) (2014) 5104-5114. [9] W.J. Koros, G.K. Fleming, Membrane-based gas separation, J. Membr. Sci. 83 (1) (1993) 1-80. [10] C.J. Orme, F.F. Stewart, Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes, J. Membr. Sci. 253 (1-2) (2005) 243-249. [11] G. Chatterjee, A.A. Houde, S.A. Stern, Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity, J. Membr. Sci. 135 (1) (1997) 99-106. [12] X. Chen, G.P. Liu, W.Q. Jin, Natural gas purification by asymmetric membranes: An overview, Green Energy Environ. 6 (2) (2021) 176-192. [13] T. Mohammadi, M.T. Moghadam, M. Saeidi, M. Mahdyarfar, Acid gas permeation behavior through poly(ester urethane urea) membrane, Ind. Eng. Chem. Res. 47 (19) (2008) 7361-7367. [14] W.L. Qiu, C.C. Chen, L.R. Xu, L.L. Cui, D.R. Paul, W.J. Koros, Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation, Macromolecules 44 (15) (2011) 6046-6056. [15] L. Yin, D.F. Li, H.X. Guo, S. Wang, T.X. Zhang, Y.L. Liu, F.Y. Gai, X.G. Zhao, High-performance carbonized ZIF-8-doped hybrid carbon molecular sieve membrane for CO2/N2 separation, J. Membr. Sci. 655 (2022) 120610. [16] E. Lasseuguette, B. Comesana-Gandara, Polymer membranes for gas separation, Membranes 2022, 12(2), 207. [17] A. Bos, I.G.M. Punt, M. Wessling, H. Strathmann, CO2-induced plasticization phenomena in glassy polymers, J. Membr. Sci. 155 (1) (1999) 67-78. [18] G. Genduso, I. Pinnau, Quantification of sorption, diffusion, and plasticization properties of cellulose triacetate films under mixed-gas CO2/CH4 environment, J. Membr. Sci. 610 (2020) 118269. [19] Y.Y. Zhang, X. Feng, S. Yuan, J.W. Zhou, B. Wang, Challenges and recent advances in MOF-polymer composite membranes for gas separation, Inorg. Chem. Front. 3 (7) (2016) 896-909. [20] G. Genduso, Y.G. Wang, B.S. Ghanem, I. Pinnau, Permeation, sorption, and diffusion of CO2-CH4 mixtures in polymers of intrinsic microporosity: The effect of intrachain rigidity on plasticization resistance, J. Membr. Sci. 584 (2019) 100-109. [21] E.R. Hensema, B. Gebben, M.H.V. Mulder, C.A. Smolders, Polyoxadiazoles and polytriazoles as new heat and solvent resistant membrane materials, Bull. Des Societes Chim. Belg. 100 (2) (1991) 129-136. [22] H. Maab, L. Francis, A. Al-saadi, C. Aubry, N. Ghaffour, G. Amy, S.P. Nunes, Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery, J. Membr. Sci. 423 (2012) 11-19. [23] H. Maab, A. Al Saadi, L. Francis, S. Livazovic, N. Ghafour, G.L. Amy, S.P. Nunes, Polyazole hollow fiber membranes for direct contact membrane distillation, Ind. Eng. Chem. Res. 52 (31) (2013) 10425-10429. [24] G. Matar, G. Gonzalez-Gil, H. Maab, S. Nunes, P. Le-Clech, J. Vrouwenvelder, P.E. Saikaly, Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor, Water Res. 95 (2016) 27-38. [25] H. Maab, S.P. Nunes, Porous polyoxadiazole membranes for harsh environment, J. Membr. Sci. 445 (2013) 127-134. [26] S.P. Nunes, H. Maab, L. Francis, Membrane for water purification, US Pat. 0179450 A1 (2021). [27] S.P. Nunes, H. Maab, L. Francis, Polyazole membrane for water purification, Eur. Pat. 2626127 B1 (2013). [28] E.R. Hensema, M.E.R. Sena, M.H.V. Mulder, C.A. Smolders, Gas separation properties of new polyoxadiazole and polytriazole membranes, Gas Sep. Purif. 8 (3) (1994) 149-160. [29] E.R. Hensema, Polymeric gas separation membranes, Adv. Mater. 6 (4) (1994) 269-279. [30] B. Gebben, M.H.V. Mulder, C.A. Smolders, Gas separation properties of a thermally stable and chemically resistant polytriazole membrane, J. Membr. Sci. 46 (1) (1989) 29-41. [31] S. Chisca, N.M.S. Bettahalli, V.E. Musteata, S. Vasylevskyi, M.N. Hedhili, E. Abou-Hamad, M. Karunakaran, G. Genduso, S.P. Nunes, Thermal treatment of hydroxyl functionalized polytriazole and its effect on gas transport: From crosslinking to carbon molecular sieve, J. Membr. Sci. 642 (2022) 119963. [32] H. Maab, E. Qasem, Fluorinated polytriazole membrane materials for gas separation technology, US Pat., 10,919,002 B2 (2018). [33] H. Maab, A. Touheed, Polyazole polymers membranes for high pressure gas separation technology, J. Membr. Sci. 642 (2022) 119980. [34] H. Maab, Polytriazole coating materials for metal substrate, US Pat. 0017774 A1 (2022). [35] H. Maab, Polytriazole copolymers composition, US Pat. 0017688 A1 (2022). [36] A. Bondi, Van der Waals volumes and radii, J. Phys. Chem. 68 (3) (1964) 441-451. [37] D.W. Van Krevelen, K. Te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions (4th ed.), Elsevier, Amsterdam, 2009. [38] Y.H. Zhao, M.H. Abraham, A.M. Zissimos, Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds, J. Org. Chem. 68 (19) (2003) 7368-7373. [39] G.O. Yahaya, I. Mokhtari, A.A. Alghannam, S.H. Choi, H. Maab, A.A. Bahamdan, Cardo-type random co-polyimide membranes for high pressure pure and mixed sour gas feed separations, J. Membr. Sci. 550 (2018) 526-535. [40] J.G. Wijmans, R.W. Baker, The solution-diffusion model: A review, J. Membr. Sci. 107 (1-2) (1995) 1-21. [41] M.L. Zhang, L.M. Deng, D.X. Xiang, B. Cao, S.S. Hosseini, P. Li, Approaches to suppress CO2-induced plasticization of polyimide membranes in gas separation applications, Processes 7 (1) (2019) 51. [42] M.M. Rahman, C. Abetz, S. Shishatskiy, J. Martin, A.J. Muller, V. Abetz, CO2 selective polyactive membrane: Thermal transitions and gas permeance as a function of thickness, ACS Appl. Mater. Interfaces 10 (31) (2018) 26733-26744. [43] S. Chisca, P.H.H. Duong, A.H. Emwas, R. Sougrat, S.P. Nunes, Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes, Polym. Chem. 6 (4) (2015) 543-554. [44] S. Chisca, G. Falca, V.E. Musteata, C. Boi, S.P. Nunes, Crosslinked polytriazole membranes for organophilic filtration, J. Membr. Sci. 528 (2017) 264-272. [45] W.J. Koros, G.K. Fleming, S.M. Jordan, T.H. Kim, H.H. Hoehn, Polymeric membrane materials for solution-diffusion based permeation separations, Prog. Polym. Sci. 13 (4) (1988) 339-401. [46] M.R. Pixton, D.R. Paul, Relationships between structure and transport properties for polymers with aromatic backbones. In: D.R. Paul, Y. Yampolskii (Eds.), Polymeric Gas Separation Membranes, CRC Press, Boca Raton, 1994. pp. 83-154. [47] J.H. Petropoulos. Mechanisms and theories for sorption and diffusion of gases in polymers. In: D.R. Paul, Y. Yampolskii (Eds.), Polymeric Gas Separation Membranes, CRC Press, Boca Raton, 1994. pp. 17-82. [48] M. Wessling, S. Schoeman, T. van der Boomgaard, C.A. Smolders, Plasticization of gas separation membranes, Gas Sep. Purif. 5 (4) (1991) 222-228. [49] J.K. Adewole, A.L. Ahmad, S. Ismail, C.P. Leo, Current challenges in membrane separation of CO2 from natural gas: A review, Int. J. Greenh. Gas Contr. 17 (2013) 46-65. [50] A. Car, C. Stropnik, W. Yave, K.V. Peinemann, Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases, Sep. Purif. Technol. 62 (1) (2008) 110-117. [51] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (1-2) (2008) 390-400. [52] H. Maab, M. Schieda, W. Yave, S. Shishatskiy, and S.P. Nunes, SPEEK/polyimide blends for proton conductive membranes, Fuel Cells 9 (4) (2009) 401-409. [53] C.Q. Liu, S.T. Wilson, J.J. Chiou, D.A. Lesch, S. Kulprathipanja, Plasticization resistant membranes, US Pat., 0326273 A1 (2010). [54] C.Q. Liu, S.T. Wilson, D.A. Lesch, High plasticization-resistant cross-linked polymeric membranes for separation, US Pat. 0318620 A1 (2009). [55] W.J. Koros, De Q. Vu, R. Mahajan, S.J. Miller, Gas separations using mixed matrix membranes, US Pat., 6503295 B1 (2003). [56] Y. Han, W.S. Winston Ho, Recent advances in polymeric membranes for CO2 capture, Chin. J. Chem. Eng. 26 (11) (2018) 2238-2254. [57] K.V. Peinemann, G. Johannsen, W.Y. Rios, A. Cai, Polymer membrane, US Pat., 8317900 B2 (2012). [58] B. Bikson, Y. Ding, J.K. Leroux, J.K. Nelson, Gas separation using membranes formed from blends of perfluorinated polymers, US Pat., 6723152 B2 (2004). [59] C.Q. Liu, T.C. Bowen, E.G. Harbert, R. Minkov, S.A. Faheem, Z. Osman, Process of separating gases using polyimide membranes, US Pat., 8704030 B2 (2014). [60] B. Comesana-Gandara, J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, N.B. McKeown, Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultra permeable benzotriptycene-based polymers of intrinsic microporosity, Energy Environ. Sci. 12 (9) (2019) 2733-2740. [61] S. Xu, X.L. Ren, N. Zhao, L. Wu, Z.G. Zhang, Y.F. Fan, N.W. Li, Self-crosslinking of bromomethylated 6FDA-DAM polyimide for gas separations, J. Membr. Sci. 636 (2021) 119534. [62] Riya Sidhikku Kandath Valappil, Nayef Ghasem, Mohamed Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review, J. Ind. Eng. Chem. 98 (2021) 103-129. [63] Y. Rogan, R. Malpass-Evans, M. Carta, M. Lee, J.C. Jansen, P. Bernardo, G. Clarizia, E. Tocci, K. Friess, M. Lanc, N.B. McKeown, A highly permeable polyimide with enhanced selectivity for membrane gas separations, J. Mater. Chem. A 2 (14) (2014) 4874-4877. |