[1] J. Briffa, E. Sinagra, and R. Blundell, “Heavy metal pollution in the environment and their toxicological effects on humans,” Heliyon, vol. 6, no. 9, p. e04691, 2020, doi: 10.1016/j.heliyon.2020.e04691. [2] M. Rezaei, N. Pourang, and A. M. Moradi, “Removal of lead from aqueous solutions using three biosorbents of aquatic origin with the emphasis on the affective factors,” Sci. Rep., vol. 12, no. 1, pp. 1-20, 2022, doi: 10.1038/s41598-021-04744-0. [3] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, and M. Sadeghi, “Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic,” Front. Pharmacol., vol. 12, no. April, pp. 1-19, 2021, doi: 10.3389/fphar.2021.643972. [4] N. A. A. Qasem, R. H. Mohammed, and D. U. Lawal, “Removal of heavy metal ions from wastewater: a comprehensive and critical review,” npj Clean Water, vol. 4, no. 1, 2021, doi: 10.1038/s41545-021-00127-0. [5] S. U. Khan, M. Khalid, K. Hashim, and M. H. Jamadi, “Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis,” Sustain., vol. 15, no. 2, 2023, doi: 10.3390/su15021708. [6] F. Gholami, A. Asadi, and A. A. Zinatizadeh, “Efficient heavy metals and salts rejection using a novel modified polysulfone nanofiltration membrane,” Appl. Water Sci., vol. 12, no. 7, pp. 1-18, 2022, doi: 10.1007/s13201-022-01671-x. [7] M. Agarwal and K. Chaudhry, “Heavy Metal Sources Impacts & Removal Technologies,” vol. 3, no. 03, pp. 1-7, 2015, [Online]. Available: www.ijert.org. [8] A. E. Burakov, E. V. Galunin, I. V. Burakova, and A. E. Kucherova, “Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review,” Ecotoxicol. Environ. Saf., vol. 148, no. November 2017, pp. 702-712, 2018, doi: 10.1016/j.ecoenv.2017.11.034. [9] R. Baby, M. Z. Hussein, A. H. Abdullah, and Z. Zainal, “Nanomaterials for the Treatment of Heavy Metal Contaminated Water,” Polymers (Basel)., vol. 14, no. 3, pp. 1-17, 2022, doi: 10.3390/polym14030583. [10] Z. H. Mohammad, F. Ahmad, S. A. Ibrahim, and S. Zaidi, “Application of nanotechnology in different aspects of the food industry,” Discov. Food, vol. 2, no. 1, 2022, doi: 10.1007/s44187-022-00013-9. [11] I. Ijaz, E. Gilani, A. Nazir, and A. Bukhari, “Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles,” Green Chem. Lett. Rev., vol. 13, no. 3, pp. 59-81, 2020, doi: 10.1080/17518253.2020.1802517. [12] P. Samaddar, Y. S. Ok, K. H. Kim, E. E. Kwon, and D. C. W. Tsang, “Synthesis of nanomaterials from various wastes and their new age applications,” J. Clean. Prod., vol. 197, pp. 1190-1209, 2018, doi: 10.1016/j.jclepro.2018.06.262. [13] H. Sadegh, G. A. M. Ali, V. K. Gupta, and A. S. H. Makhlouf, “The role of nanomaterials as effective adsorbents and their applications in wastewater treatment,” J. Nanostructure Chem., vol. 7, no. 1, pp. 1-14, 2017, doi: 10.1007/s40097-017-0219-4. [14] M. Irfan, A. Arif, M. A. Munir, M. Y. Naz, and S. Shukrullah, “Statistically Analyzed Heavy Metal Removal Efficiency of Silica- Treatment,” 2023, doi: 10.1021/acsomega.3c05764. [15] Z. Raji, A. Karim, A. Karam, and S. Khalloufi, “Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation-A Review,” Waste, vol. 1, no. 3, pp. 775-805, 2023, doi: 10.3390/waste1030046. [16] L. Spitzmuller, F. Nitschke, B. Rudolph, J. Berson, T. Schimmel, and T. Kohl, “Dissolution control and stability improvement of silica nanoparticles in aqueous media,” J. Nanoparticle Res., vol. 25, no. 3, 2023, doi: 10.1007/s11051-023-05688-4. [17] A. Taufiq, A. Nikmah, A. Hidayat, and S. Sunaryono, “Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle,” Heliyon, vol. 6, no. 4, 2020, doi: 10.1016/j.heliyon.2020.e03784. [18] R. Nicola, O. Costisor, M. Ciopec, A. Negrea, and R. Lazau, “Silica-coated magnetic nanocomposites for Pb2+ removal from aqueous solution,” Appl. Sci., vol. 10, no. 8, 2020, doi: 10.3390/APP10082726. [19] M. Irfan, A. Arif, M. A. Munir, and M. Y. Naz, “Statistically Analyzed Heavy Metal Removal Efficiency of Silica-Coated Cu0.50Mg0.50Fe2O4 Magnetic Adsorbent for Wastewater Treatment,” ACS Omega, vol. 8, no. 50, pp. 47623-47634, 2023, doi: 10.1021/acsomega.3c05764. [20] N. Ahmad, H. Sereshti, M. Mousazadeh, H. Rashidi Nodeh, M. A. Kamboh, and S. Mohamad, “New magnetic silica-based hybrid organic-inorganic nanocomposite for the removal of lead(II) and nickel(II) ions from aqueous solutions,” Mater. Chem. Phys., vol. 226, no. Ii, pp. 73-81, 2019, doi: 10.1016/j.matchemphys.2019.01.002. [21] Y. Xu, Y. Li, and Z. Ding, “Network-Polymer-Modified Superparamagnetic Magnetic Silica Nanoparticles for the Adsorption and Regeneration of Heavy Metal Ions,” Molecules, vol. 28, no. 21, 2023, doi: 10.3390/molecules28217385. [22] V. P. Aswathi, S. Meera, C. G. A. Maria, and M. Nidhin, “Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review,” Nanotechnol. Environ. Eng., vol. 8, no. 2, pp. 377-397, 2023, doi: 10.1007/s41204-022-00276-8. [23] Y. H. Gonfa, F. B. Tessema, A. Bachheti, and N. Rai, “Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review,” Curr. Res. Biotechnol., vol. 6, no. November, p. 100152, 2023, doi: 10.1016/j.crbiot.2023.100152. [24] J. Singh, T. Dutta, K. H. Kim, M. Rawat, P. Samddar, and P. Kumar, “‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation,” J. Nanobiotechnology, vol. 16, no. 1, pp. 1-24, 2018, doi: 10.1186/s12951-018-0408-4. [25] A. M. Atta, Y. M. Moustafa, A. O. Ezzat, and A. I. Hashem, “Novel magnetic silica-ionic liquid nanocomposites for wastewater treatment,” Nanomaterials, vol. 10, no. 1, 2020, doi: 10.3390/nano10010071. [26] F. Dadvar and D. Elhamifar, “Magnetic silica/graphene oxide nanocomposite supported ionic liquid-manganese complex as a powerful catalyst for the synthesis of tetrahydrobenzopyrans,” Sci. Rep., vol. 13, no. 1, pp. 1-13, 2023, doi: 10.1038/s41598-023-46629-4. [27] R. G. Digigow, J. F. Dechezelles, and H. Dietsch, “Preparation and characterization of functional silica hybrid magnetic nanoparticles,” J. Magn. Magn. Mater., vol. 362, pp. 72-79, 2014, doi: 10.1016/j.jmmm.2014.03.026. [28] Y. Liang, Z. Han, Q. Zeng, S. Wang, and W. Sun, “Effective Removal of Pb2+ from Aqueous Solution Using Magnetic Mesoporous Silica Prepared by Rubidium-Containing Biotite Leaching Residues and Wastewater,” Water (Switzerland), vol. 14, no. 17, 2022, doi: 10.3390/w14172652. [29] G. Falk, G. P. Shinhe, L. B. Teixeira, E. G. Moraes, and A. P. N. de Oliveira, “Synthesis of silica nanoparticles from sugarcane bagasse ash and nano-silicon via magnesiothermic reactions,” Ceram. Int., vol. 45, no. 17, pp. 21618-21624, 2019, doi: 10.1016/j.ceramint.2019.07.157. [30] S. Rovani, J. J. Santos, P. Corio, and D. A. Fungaro, “An alternative and simple method for the preparation of bare silica nanoparticles using sugarcane waste ash, an abundant and despised residue in the Brazilian industry,” J. Braz. Chem. Soc., vol. 30, no. 7, pp. 1524-1533, 2019, doi: 10.21577/0103-5053.20190049. [31] P. Worathanakul, P. Mothong, and P. Engkawara, “Fe2O3-SiO2 nanocomposite derived from bagasse ash for Cr(VI) removal,” J. Biobased Mater. Bioenergy, vol. 7, no. 2, pp. 219-222, 2013, doi: 10.1166/jbmb.2013.1322. [32] D. Dhaneswara, A. Tsania, J. F. Fatriansyah, and A. Federico, “Synthesis of Mesoporous Silica from Sugarcane Bagasse as Adsorbent for Colorants Using Cationic and Non-Ionic Surfactants,” Int. J. Technol., vol. 15, no. 2, pp. 373-382, 2024, doi: 10.14716/ijtech.v15i2.6721. [33] E. M. Papaslioti, P. Le Bouteiller, H. Carreira, J. M. Greneche, A. Fernandez-Martinez, and L. Charlet, “Immobilisation of contaminants by ‘green’-synthesized magnetite as a remediation approach to the phosphogypsum waste leachates model solution,” J. Environ. Manage., vol. 341, 2023, doi: 10.1016/j.jenvman.2023.117997. [34] S. Karina, A. W. Perdana, V. Prajaputra, N. Isnaini, P. H. Nuufus, and A. Bismi, “Silica-Magnetite Composite as an Eco-Friendly Adsorbent for Aqueous Tetracycline Removal - Kinetic and Isotherm Studies,” Ecol. Eng. Environ. Technol., vol. 25, no. 1, pp. 82-92, 2024, doi: 10.12912/27197050/174225. [35] M. B. Aregu, S. L. Asfaw, and M. M. Khan, “Identification of two low-cost and locally available filter media (pumice and scoria) for removal of hazardous pollutants from tannery wastewater,” Environ. Syst. Res., vol. 7, no. 1, 2018, doi: 10.1186/s40068-018-0112-2. [36] X. Wang, D. Li, R. Bai, S. Liu, C. Yan, and J. Zhang, “Evolution of the pore structure of pumice aggregate concrete and the effect on compressive strength,” Rev. Adv. Mater. Sci., vol. 62, no. 1, 2023, doi: 10.1515/rams-2023-0112. [37] L. A. September, N. Kheswa, N. S. Seroka, and L. Khotseng, “Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash - a mini review,” RSC Adv., vol. 13, no. 2, pp. 1370-1380, 2023, doi: 10.1039/d2ra07490g. [38] G. Tsegaye, Z. Kiflie, T. H. Mekonnen, and M. Jida, “Synthesis and characterization of coffee husk extract (CHE)-capped Fe3O4/PU/ZnO nanocomposites with antimicrobial activity,” Biomass Convers. Biorefinery, no. 0123456789, 2024, doi: 10.1007/s13399-024-05918-2. [39] M. Z. H.Soleimani, A.Mahvi, H.Amir, K.Yaghmaeian, A.Abbasnia, K.Sharafi, M.Alimohammadi, “Effect of modification by five different acids on pumice stone as natural and low-cost adsorbent for removal of humic acid from aqueous solutions - Application of response surface methodology,” J. Mol. Liq., vol. 290, 2019, doi: 10.1016/j.molliq.2019.111181. [40] E. Akhayere, A. Vaseashta, and D. Kavaz, “Novel magnetic nano silica synthesis using barley husk waste for removing petroleum from polluted water for environmental sustainability,” Sustain., vol. 12, no. 24, pp. 1-16, 2020, doi: 10.3390/su122410646. [41] J. A. Flood-Garibay and M. A. Mendez-Rojas, “Synthesis and characterization of magnetic wrinkled mesoporous silica nanocomposites containing Fe3O4 or CoFe2O4 nanoparticles for potential biomedical applications,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 615, no. January, 2021, doi: 10.1016/j.colsurfa.2021.126236. [42] N. Meky, E. Salama, M. F. Soliman, S. G. Naeem, M. Ossman, and M. Elsayed, “Synthesis of Nano-silica Oxide for Heavy Metal Decontamination from Aqueous Solutions,” Water, Air, Soil Pollut., vol. 235, no. 2, pp. 1-23, 2024, doi: 10.1007/s11270-024-06944-6. [43] E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez, and M. E. Zappi, “Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review,” Clean. Eng. Technol., vol. 1, no. October, p. 100032, 2020, doi: 10.1016/j.clet.2020.100032. [44] S. Mustapha, D. T. Shuaib, M. M. Ndamitso, M. B. Etsuyankpa, and A. Sumaila, “Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods,” Appl. Water Sci., vol. 9, no. 6, pp. 1-11, 2019, doi: 10.1007/s13201-019-1021-x. [45] A. Tebeje, Z. Worku, T. T. I. Nkambule, and J. Fito, “Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent,” Int. J. Environ. Sci. Technol., vol. 19, no. 3, pp. 1893-1906, 2022, doi: 10.1007/s13762-021-03230-4. [46] S. Kalam, S. A. Abu-Khamsin, M. S. Kamal, and S. Patil, “Surfactant Adsorption Isotherms: A Review,” ACS Omega, vol. 6, no. 48, pp. 32342-32348, 2021, doi: 10.1021/acsomega.1c04661. [47] S. Shamohammadi, M. Khajeh, R. Fattahi, and M. Kadkhodahosseini, “Introducing the new model of chemical adsorption for heavy metals by Jacobi activated carbon adsorbents, Iranian activated carbon and blowy sand,” Case Stud. Chem. Environ. Eng., vol. 6, no. June, p. 100220, 2022, doi: 10.1016/j.cscee.2022.100220. [48] K. H. Chu, “Revisiting the Temkin Isotherm: Dimensional Inconsistency and Approximate Forms,” Ind. Eng. Chem. Res., vol. 60, no. 35, pp. 13140-13147, 2021, doi: 10.1021/acs.iecr.1c01788. [49] R. Seyoum, B. B. Tesfamariam, D. M. Andoshe, A. Algahtani, G. M. S. Ahmed, and V. Tirth, “Investigation on control burned of bagasse ash on the properties of bagasse ash-blended mortars,” Materials (Basel)., vol. 14, no. 17, 2021, doi: 10.3390/ma14174991. [50] P. Chindaprasirt and U. Rattanasak, “Eco-production of silica from sugarcane bagasse ash for use as a photochromic pigment filler,” Sci. Rep., vol. 10, no. 1, pp. 1-8, 2020, doi: 10.1038/s41598-020-66885-y. [51] S. P. Singh and N. Endley, Fabrication of nano-silica from agricultural residue and their application. INC, 2020. doi: 10.1016/B978-0-12-817852-2.00005-6. [52] W. K. Setiawan and K. Y. Chiang, “Crop Residues as Potential Sustainable Precursors for Developing Silica Materials: A Review,” Waste and Biomass Valorization, vol. 12, no. 5, pp. 2207-2236, 2021, doi: 10.1007/s12649-020-01126-x. [53] S. Rovani, J. J. Santos, P. Corio, and D. A. Fungaro, “Highly Pure Silica Nanoparticles with High Adsorption Capacity Obtained from Sugarcane Waste Ash,” ACS Omega, vol. 3, no. 3, pp. 2618-2627, 2018, doi: 10.1021/acsomega.8b00092. [54] Munasir, A. S. Dewanto, A. Yulianingsih, and I. K. F. Saadah, “Composites of Fe3O4/SiO2 from Natural Material Synthesized by Co-Precipitation Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 202, no. 1, 2017, doi: 10.1088/1757-899X/202/1/012057. [55] N. S. Seroka, R. Taziwa, and L. Khotseng, “Green Synthesis of Crystalline Silica from Sugarcane Bagasse Ash: Physico-Chemical Properties,” Nanomaterials, vol. 12, no. 13, 2022, doi: 10.3390/nano12132184. [56] P. Wongsa, P. Phatikulrungsun, and S. Prathumthong, “FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions,” Sci. Rep., vol. 12, no. 1, pp. 1-11, 2022, doi: 10.1038/s41598-022-10669-z. [57] G. Tsegaye, Z. Kiflie, T. H. Mekonnen, and M. Jida, “Synthesis and characterization of coffee husk extract (CHE)- capped ZnO nanoparticles and their antimicrobial activity,” Biomass Convers. Biorefinery, no. 0123456789, 2023, doi: 10.1007/s13399-023-04908-0. [58] R. Kamila, Ridwan, M. P. M. Akhir, A. Patriati, and A. Insani, “Synthesis of silica particles through conventional sol-gel and sonochemistry methods and the effect of catalyst, water concentration and sample environment to the particle size,” J. Phys. Conf. Ser., vol. 2193, no. 1, 2022, doi: 10.1088/1742-6596/2193/1/012044. [59] S. Steven, E. Restiawaty, and Y. Bindar, “Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect,” Renew. Sustain. Energy Rev., vol. 149, no. May 2020, p. 111329, 2021, doi: 10.1016/j.rser.2021.111329. [60] K. Panwar, M. Jassal, and A. K. Agrawal, “In situ synthesis of Ag-SiO2Janus particles with epoxy functionality for textile applications,” Particuology, vol. 19, pp. 107-112, 2015, doi: 10.1016/j.partic.2014.06.007. [61] A. Sadat and I. J. Joye, “Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins,” Appl. Sci., vol. 10, no. 17, 2020, doi: 10.3390/app10175918. [62] D. A. de Freitas, J. A. Barbosa, G. Labuto, R. C. F. Nocelli, and E. N. V. M. Carrilho, “Removal of the pesticide thiamethoxam from sugarcane juice by magnetic nanomodified activated carbon,” Environ. Sci. Pollut. Res., vol. 29, no. 53, pp. 79855-79865, 2022, doi: 10.1007/s11356-021-18484-1. [63] C. Y. Rahimzadeh, A. A. Barzinjy, A. S. Mohammed, and S. M. Hamad, “Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles,” PLoS One, vol. 17, no. 8 August, pp. 1-15, 2022, doi: 10.1371/journal.pone.0268184. [64] L. Khouchaf, K. Boulahya, P. P. Das, S. Nicolopoulos, V. K. Kis, and J. L. Labar, “Study of the microstructure of amorphous silica nanostructures using high-resolution electron microscopy, electron energy loss spectroscopy, X-ray powder diffraction, and electron pair distribution function,” Materials (Basel)., vol. 13, no. 19, pp. 1-14, 2020, doi: 10.3390/ma13194393. [65] Munasir, A. S. Dewanto, D. H. Kusumawati, N. P. Putri, A. Yulianingsih, and I. K. F. Sa’Adah, “Structure Analysis of Fe3O4@SiO2 Core Shells Prepared from Amorphous and Crystalline SiO2 Particles,” IOP Conf. Ser. Mater. Sci. Eng., vol. 367, no. 1, 2018, doi: 10.1088/1757-899X/367/1/012010. [66] A. Ali, Y. W. Chiang, and R. M. Santos, “X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions,” Minerals, vol. 12, no. 2, 2022, doi: 10.3390/min12020205. [67] D. Chen, T. Awut, B. Liu, Y. Ma, T. Wang, and I. Nurulla, “Functionalized magnetic Fe3O4 nanoparticles for removal of heavy metal ions from aqueous solutions,” E-Polymers, vol. 16, no. 4, pp. 313-322, 2016, doi: 10.1515/epoly-2016-0043. [68] N. Sheth, D. Ngo, J. Banerjee, Y. Zhou, C. G. Pantano, and S. H. Kim, “Probing Hydrogen-Bonding Interactions of Water Molecules Adsorbed on Silica, Sodium Calcium Silicate, and Calcium Aluminosilicate Glasses,” J. Phys. Chem. C, vol. 122, no. 31, pp. 17792-17801, 2018, doi: 10.1021/acs.jpcc.8b04233. [69] N. Wei, M. X. Wei, B. H. Huang, X. F. Guo, and H. Wang, “One-pot facile synthesis of green-emitting fluorescent silicon quantum dots for the highly selective and sensitive detection of nitrite in food samples,” Dye. Pigment., vol. 184, no. March 2020, p. 108848, 2021, doi: 10.1016/j.dyepig.2020.108848. [70] T. Liu, Y. Pang, X. Xie, W. Qi, and Y. Wu, “Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties,” J. Alloys Compd., vol. 667, pp. 287-296, 2016, doi: 10.1016/j.jallcom.2016.01.175. [71] K. Faaliyan, H. Abdoos, E. Borhani, and S. S. S. Afghahi, “Magnetite-silica nanoparticles with core-shell structure: single-step synthesis, characterization and magnetic behavior,” J. Sol-Gel Sci. Technol., vol. 88, no. 3, pp. 609-617, 2018, doi: 10.1007/s10971-018-4847-z. [72] O. Kapusta, A. Zelenakova, P. Hrubovcak, V. Girman, and V. Zelenak, “Fe 2 O 3 and Gd 2 O 3 Nanoparticles Embedded in Mesoporous Silica : Magnetic Properties Comparison,” vol. 131, no. 4, pp. 860-862, 2017, doi: 10.12693/APhysPolA.131.860. [73] E. N. Bakatula, D. Richard, C. M. Neculita, and G. J. Zagury, “Determination of point of zero charge of natural organic materials,” 2018. [74] A. Mahtabani, I. Rytoluoto, R. Anyszka, X. He, E. Saarimaki, and K. Lahti, “On the Silica Surface Modification and Its Effect on Charge Trapping and Transport in PP-Based Dielectric Nanocomposites,” ACS Appl. Polym. Mater., vol. 2, no. 8, pp. 3148-3160, 2020, doi: 10.1021/acsapm.0c00349. [75] H. Tabasi, M. T. H. Mosavian, M. Darroudi, M. Khazaei, A. Hashemzadeh, and Z. Sabouri, “Synthesis and characterization of amine-functionalized Fe3O4/Mesoporous Silica Nanoparticles (MSNs) as potential nanocarriers in drug delivery systems,” J. Porous Mater., vol. 29, no. 6, pp. 1817-1828, 2022, doi: 10.1007/s10934-022-01259-5. [76] S. Wonorahardjo, F. Fajaroh, R. Joharmawan, N. Nazriati, and E. Budiasih, “Cadmium and lead ions adsorption on magnetite, silica, alumina, and cellulosic materials,” Sci. Rep., vol. 13, no. 1, pp. 1-15, 2023, doi: 10.1038/s41598-023-30893-5. [77] S. Beisl, R. Herrera Diaz, J. Marousek, A. Marouskova, and R. Periakaruppan, “Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics,” Polymers (Basel)., vol. 14, no. 2, p. 266, 2022, [Online]. Available: https://doi.org/10.3390/polym14020266. [78] S. Torgbo and P. Sukyai, “Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering,” Mater. Chem. Phys., vol. 237, 2019, doi: 10.1016/j.matchemphys.2019.121868. [79] S. S. U. Rahman, M. T. Qureshi, K. Sultana, and W. Rehman, “Single step growth of iron oxide nanoparticles and their use as glucose biosensor,” Results Phys., vol. 7, pp. 4451-4456, 2017, doi: 10.1016/j.rinp.2017.11.001. [80] L. Lemma, Z. Kiflie, and S. K. Kassahun, “Adsorption of Pb2+ and Cd2+ on the l-cysteine-functionalized graphene oxide/chitosan/polyvinyl alcohol hydrogel: Kinetic, isotherm, and thermodynamic study,” Remediation, vol. 33, no. 3, pp. 233-248, 2023, doi: 10.1002/rem.21754. [81] S. C. Ma, Z. G. Wang, J. L. Zhang, D. H. Sun, and G. X. Liu, “Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions,” Appl. Surf. Sci., vol. 327, pp. 453-461, 2015, doi: 10.1016/j.apsusc.2014.12.006. [82] A. L. Obsa, N. T. Shibeshi, E. Mulugeta, and G. A. Workeneh, “Bentonite/amino-functionalized cellulose composite as effective adsorbent for removal of lead: Kinetic and isotherm studies,” Results Eng., vol. 21, no. November 2023, p. 101756, 2024, doi: 10.1016/j.rineng.2024.101756. [83] I. H. Ifijen, A. B. Itua, M. Maliki, C. O. Ize-Iyamu, and S. O. Omorogbe, “The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles,” Heliyon, vol. 6, no. 9, 2020, doi: 10.1016/j.heliyon.2020.e04907. [84] J. Li, X. Dong, X. Liu, X. Xu, and W. Duan, “Comparative Study on the Adsorption Characteristics of Heavy Metal Ions by Activated Carbon and Selected Natural Adsorbents,” Sustain., vol. 14, no. 23, 2022, doi: 10.3390/su142315579. [85] A. K. Kushwaha, N. Gupta, and M. C. Chattopadhyaya, “Adsorption behavior of lead onto a new class of functionalized silica gel,” Arab. J. Chem., vol. 10, pp. S81-S89, 2017, doi: 10.1016/j.arabjc.2012.06.010. [86] Q. Li, W. Shi, and Q. Yang, “Polarization induced covalent bonding: A new force of heavy metal adsorption on charged particle surface,” J. Hazard. Mater., vol. 412, no. December 2020, p. 125168, 2021, doi: 10.1016/j.jhazmat.2021.125168. [87] E. Lemma, Z. Kiflie, and S. K. Kassahun, “Adsorption of Cr (VI) ion from aqueous solution on acrylamide-grafted starch (Coccinia abyssinicca)-PVA/PVP/chitosan/graphene oxide blended hydrogel: isotherms, kinetics, and thermodynamics studies,” Sep. Sci. Technol., vol. 58, no. 2, pp. 241-256, 2023, doi: 10.1080/01496395.2022.2106441. [88] N. Kasera, P. Kolar, and S. G. Hall, “Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: a review,” Biochar, vol. 4, no. 1, 2022, doi: 10.1007/s42773-022-00145-2. [89] D. Brahma and H. Saikia, “Synthesis of ZrO2/MgAl-LDH composites and evaluation of its isotherm, kinetics and thermodynamic properties in the adsorption of congo red dye,” Chem. Thermodyn. Therm. Anal., vol. 7, no. April, p. 100067, 2022, doi: 10.1016/j.ctta.2022.100067. [90] N. Ayawei, A. N. Ebelegi, and D. Wankasi, “Modelling and Interpretation of Adsorption Isotherms,” J. Chem., vol. 2017, 2017, doi: 10.1155/2017/3039817. [91] F. Togue Kamga, “Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust,” Appl. Water Sci., vol. 9, no. 1, pp. 1-7, 2019, doi: 10.1007/s13201-018-0879-3. [92] O. D. Agboola and N. U. Benson, “Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review,” Front. Environ. Sci., vol. 9, no. May, pp. 1-27, 2021, doi: 10.3389/fenvs.2021.678574. [93] S. Tamjidi, B. K. Moghadas, H. Esmaeili, F. Shakerian Khoo, G. Gholami, and M. Ghasemi, “Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: A review study,” Process Saf. Environ. Prot., vol. 148, pp. 775-795, 2021, doi: 10.1016/j.psep.2021.02.003. [94] O. Uygun, A. Murat, and G. O. Cakal, “Magnetic sepiolite/iron(III) oxide composite for the adsorption of lead(II) ions from aqueous solutions,” Clay Miner., vol. 58, no. 3, pp. 267-279, 2023, doi: 10.1180/clm.2023.24. [95] P. B. Hassan, R. O. Rasheed, and K. Zargoosh, “Cadmium and Lead Removal from Aqueous Solution Using Magnetite Nanoparticles Biofabricated from Portulaca oleracea Leaf Extract,” J. Nanomater., vol. 2022, 2022, doi: 10.1155/2022/1024554. [96] A. Lolasa, N. T. Shibeshi, and E. Mulugeta, “A green composite of sodium carboxymethyl cellulose and amino-decorated cellulose reinforced with modified bentonite for removal of lead (II): Kinetics and isotherm studies,” Mater. Today Commun., vol. 41, no. April, p. 110412, 2024, doi: 10.1016/j.mtcomm.2024.110412. [97] M. Kajeiou et al., “Competitive and non-competitive zinc, copper and lead biosorption from aqueous solutions onto flax fibers,” Chemosphere, vol. 260, no. 33, 2020, doi: 10.1016/j.chemosphere.2020.127505. |