1 Yamasaki, A., “An overview of CO2 mitigation options for global warming-Emphasizing CO2 sequestration options”, J. Chem. Eng. Japan, 36 (4), 361-375 (2003). 2 Zhang, A.L., Fang, D., Greenhouse Gas CO2 Control and Recovery, China environmental science press, Beijing (1996). (in Chinese) 3 U.S. EIA, “International energy outlook 2010”, Washington, DC, 2010 [2010-10-13], http://www.eia.doe.gov/oiaf/ieo. 4 National Energy Technology Laboratory (NETL), “Pulverized coal oxy-combustion power plants”, 2008[2011-02-05], http://www.netl. doe.gov/energy-analyses/pubs/PC%20Oxyfuel%20Combustion%20 Revised%20Report%202008.pdf. 5 Yang, H.Q., Xu, Z.H., Fan, M.H., Gupta, R., Slimane, R.B., Bland, A.E., Wright, L., “Progress in carbon dioxide separation and capture:A review”, J. Environ. Sci., 20 (1), 14-27 (2008). 6 Ho, M.T., Allinson, G.W., Wiley, D.E., “Factors affecting the cost of capture for Australian lignite coal fired power plants”, Energy Procedia, 1 (1), 763-770 (2009). 7 Herzog, H., Meldon, J., Hatton, A., “Advanced post-combustion CO2 capture”, 2009 [2011-02-05], http://web.mit.edu/mitei/docs/ reports/ herzog-meldon-hatton.pdf. 8 Klemes, J., Bulatov, I., Cockerill, T., “Techno-economic modeling and cost functions of CO2 capture processes”, Comput. Aided Chem. Eng., 20, 295-300 (2005). 9 Hoffmann, S., Bratlett, M., Finkenrath, M., Evulet, A., Ursin, T.P., “Performance and cost analysis of advanced gas turbine cycles with precombustion CO2 capture”, J. Eng. for Gas Turbines and Power, 131 (2), 021701, 1-7. 10 Metz, B., Davidson, O., Coninck, H. D., Loos, M., Meyer, L., “Carbon dioxide capture and storage”, Cambridge University Press, 2005 [2010-10-13], http://www.climatescience.gov/workshop2005/presentations/breakout_2ARubin.pdf. 11 Li, J.L., Chen, B.H., “Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors”, Sep. Purif. Technol, 41 (2), 109-122 (2005). 12 Gibson, J., Schallehn, D., Zheng, Q., Chen, J., “Carbon dioxide capture from coal-fired power plants in China”, Summary Report for NZEC Work Package 3,2009 [2010-10-13], http://www.nzec.info/en/ assets/Reports/Techno-Economic-Comparison-WP3-Final-English.pdf. 13 Oexmann, J., Kather, A., “Post-combustion CO2 capture in coal-fired power plants:Comparison of integrated chemical absorption processes with piperazine promoted potassium carbonate and MEA”, Energy Procedia, 1 (1), 799-806 (2009). 14 Hamilton, M.R., Herzog, H.J., Parsons, J.E., “Cost and U.S. public policy for new coal power plants with carbon capture and sequestration”, Energy Procedia, 1 (1), 4487-4494 (2009). 15 Yan, S.P., Fang, M.X., Zhang, W.F., Zhong, W.L., Luo, Z.Y., Cen, K.F., “Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China”, Energy Convers. Manage., 49 (11), 3188-3197 (2008). 16 Zhong, W.L., “Study on CO2 chemical absorption technology”, Master Thesis, Zhejiang University, China (2008). (in Chinese). 17 Romeo, L.M., Bolea, I., Escosa, J.M., “Integration of power plant and amine scrubbing to reduce CO2 capture costs”, Appl. Therm. Eng., 28 (8-9), 1039-1046 (2008). 18 Fang, M.X., Zhang, W.F., Yan, S.P., Luo, Z.Y., Cen, K.F., “Economic analysis on separation of CO2 from coal-fired power plant”, J. Zhejiang University (Eng. Sci.), 41 (12), 2077-2081 (2007). (in Chinese) 19 Yan, S.P., Fang, M.X., Zhang, W.F., Luo, Z.Y., Cen, K.F., “Engineering design and economic analysis of CO2 sequestration from flue gas by using membrane absorption techniques”, J. Power Eng., 27 (3), 415-421 (2007). (in Chinese). 20 Abu-Zahra, M.R.M., Niederer, J.P.M., Feron, P.H.M., Feron, P.H.M., Versteeg, G.F., “CO2 capture from power plants Part II. A parametric study of the economical performance based on mono-ethanolamine”, Int. J. Greenhouse Gas Control, 1 (2), 135-142 (2007). 21 Peeters, A.N.M., Faaij, A.P.C., Turkenburg, W.C., “Techno-economic analysis of natural gas combined cycles with post-combustion CO2 absorption, including a detailed evaluation of the development potential”, Greenhouse Gas Control, 1 (4), 396-417 (2007). 22 Ho, M.T., Allinson, G.W., Wiley, D.E., “Comparison of CO2 separation options for geo-sequestration:Are membranes competitive?”, Desalination, 192 (1-3), 288-295 (2006). 23 Ho, M.T., Leamon, G., Alinson, G.W., Wiley, D.E., “Economics of CO2 and mixed gas geosequestration of flue gas using gas separation membranes”, Ind. Eng. Chem. Res., 45 (8), 2546-2552 (2006). 24 Ho, M.T., Wiley, D.E., Allinson, G.W., “Reducing the cost of post-combustion CO2 capture”, In:Proceedings of the Eighth International Conference on Greenhouse Gas Technologies (GHGT-8), Tronheim, Norway (2006). 25 Rubin, E.S., Rao, A.B., Chen, C., “Comparative assessments of fossil fuel power plants with CO2 capture and storage”, 2005 [2010-02-05], http://uregina.ca/ghgt7/PDF/papers/peer/475.pdf. 26 Ciferno, J.P., DiPietro, P., Tarka, T., “An economic scoping study for CO2 capture using aqueous ammonia”, 2005 [2010-10-13], http://www. transactionsmagazine.com/ArgonneLabCommonSense.pdf. 27 Simmondsl, M., Hurst, P., “Post combustion technologies for CO2 capture:A techno-economic overview of selected options”, 2005 [2010-10-13], http://uregina.ca/ghgt7/PDF/papers/nonpeer/471.pdf . 28 Jaud, P., Gros-Bonnivard, R., Kanniche, M., “Technico-economic feasibility study of CO2 capture, transport and geo-sequestration:a case study for France”, 2005[2010-10-13], http://uregina.ca/ghgt7/ PDF/papers/peer/033.pdf. 29 Morrison, G.F., “Summary of Canadian clean power coalition work on CO2 capture and storage”, 2004 [2010-10-13] http://www.iea-coal.org.uk/publishor/system/component_view.asp?P hyDocId=5602&LogDocId=81216. 30 Rao, A.B., Rubin, E.S., Berkenpas, M.B., “An integrated modeling framework for carbon management technologies”, 2004 [2010-10-13], http://www.iecm-online.com/documentation/tech_04.pdf. 31 Singh, D., Croiset, E., Douglas, P.L., Douglas, M.A., “techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion”, Energy Convers. Manage., 44 (19), 3073-309 (2003). 32 Chen, C., Rao, A.B., Rubin, E.S., “Comparative assessment of CO2 capture options for Existing coal-fired power plants”, The Second National Conference on Carbon Sequestration, Alexandria, VA, USA (2003). 33 Rao, A. B., Rubine, S. A., “Technical, Economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control”, Environ. Sci. Technol., 36 (20), 4467-4475 (2002). 34 Parsons Infrastructure & Technology Group, Inc. “Updated cost and performance estimates for fossil fuel power plants with CO2 removal”, 2002 [2010-10-13], http://www.netl.doe.gov/technologies/carbon_seq/Resources/Analysis/pubs/UpdatedCosts.pdf. 35 Simbeck, D.R., “CO2 mitigation economics for existing coal-fired power plants”, Pittsburgh Coal Conference, Newcastle, NSW, Australia, 2001 [2010-10-13], http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/7c2.pdf. 36 Alstom Power Inc., ABB Lummus Global Inc., “Engineering feasibility and economics of CO2 capture on an existing coal-fired power plant”, US Department of Energy/NETL, Pittsburgh, PA, 2001 [2010-10-13], http://www.netl.doe.gov/technologies/carbon_seq/Resources/Analysis/pubs/AlstomReport.pdf. 37 Yang, D.X., Wang, Z., Wang, J.X, Wang, S.C., “Potential of two-stage membrane system with recycle stream for CO2 capture from post-combustion gas”, Energy Fuels, 23, 4755-4762 (2009). 38 Zhao, L., Menzer, R., Riensche, E., Blum, L., Stolten, D., “Concepts and investment cost analyses of muti-stage membrane systems used in post-combustion processes”, Energy Procedia, 1 (1), 269-278 (2009). 39 He, X.Z., Lie, J.A., Sheridan, E., Hagg, M.B., “CO2 Capture by Hollow Fibre Carbon Membranes:Experiments and Process Simulations”, Energy Procedia, 1 (1), 261-268 (2009). 40 Merkel, T.C., Lin, H.Q., Wei, X.T., Baker, R., “Power plant post-combustion carbon dioxide capture:an opportunity for membranes”, J. Membr. Sci., 359 (1-2), 126-139 (2010). 41 Shim, H.M., Lee, J.S., Wang, H.Y., Choi, S.H., Kim, J.H., Kim, H.T., “Modeling and economic analysis of CO2 separation process with hollow fiber membrane module”, Korean J. Chem. Eng., 24 (3), 537-541 (2007). 42 Ho, M.T., Allinson, G.W., Wiley, D.E., “Reducing the cost of CO2 capture from flue gases using membrane technology”, Ind. Eng. Chem. Res., 47 (5), 1562-1568 (2008). 43 Ho, M.T., Allinson, G.W., Wiley, D.E., “Reducing the cost of CO2 capture from flue gases using pressure swing adsorption”, Ind. Eng. Chem. Res., 47 (14), 4883-4890 (2008). 44 Zhang, J., Webley, P.A., Xiao, P., “Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas”, Energy Convers. Manage., 49 (2), 346-356 (2008). 45 European Commission, “CO2 capture and storage projects”, 2007 [2010-10-13], http://ec.europa.eu/research/energy/pdf/synopses_co2_en.pdf. 46 Woods, M.C., Capicotto, P.J., Haslbeck, J.L., Kuehn, N.J., Matuszewski, M.., Pinkerton, L.L., Rutkowski, M.D. Schoff, R.L., Vaysman, V., “Cost and Performance Baseline For Fossil Energy Plants”, National Energy Technology Laboratory, 2007 [2011-2-22], http://www.netl.doe.gov/energy-analyses/pubs/Bituminous%20Basel ine_Final%20Report.pdf. |