[1] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (5) (2005) 366-377. [2] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science 334 (6058) (2011) 928-935. [3] J.S. Chen, Y.L. Tan, M.L. Chang, Y.L. Cheah, D. Luan, S. Madhavi, F.Y. Chiang Boey, L.A. Archer, X.W. Lou, Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage, J. Am. Chem. Soc. 132 (17) (2010) 6124-6130. [4] S.T.Myung, N. Takahashi, S. Komaba, C.S. Yoon, Y.K. Sun, K. Amine, H. Yashiro, Nanostructured TiO2 and its application in lithium-ion storage, Adv. Funct. Mater. 21 (17) (2011) 3231-3241. [5] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (16) (2008) 2930-2946. [6] Y. Zhang, Y. Yang, X. Wang, S. Li, Synthesis of sub-micrometer lithium iron phosphate particles for lithium ion battery by using supercritical hydrothermal method, Chin. J. Chem. Eng. 22 (2) (2014) 234-237. [7] Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithiumelectrochemical reactivity of lithiumtitanites and titaniumoxides: A review, J. Power Sources 192 (2) (2009) 588-598. [8] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev. 107 (7) (2007) 2891-2959. [9] M.P. Genovese, I.V. Lightcap, P.V. Kamat, Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells, ACS Nano 6 (1) (2012) 865-872. [10] G.N. Zhu, Y.G.Wang, Y.Y. Xia, Ti-based compounds as anodematerials for Li-ion batteries, Energy Environ. Sci. 5 (5) (2012) 6652-6667. [11] Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage, Chem. Soc. Rev. 40 (7) (2011) 4167-4185. [12] D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications, Adv. Mater. 18 (21) (2006) 2807-2824. [13] N. Aldred, G.Z. Li, Y. Gao, A.S. Clare, S.Y. Jiang, Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings, Biofouling 26 (6) (2010) 673-683. [14] K.Wang, M.Wei, M.A. Morris, H. Zhou, J.D. Holmes, Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries, Adv. Mater. 19 (2007) 3016-3020. [15] Y.G. Guo, J.S. Hu, L.J.Wan, Nanostructuredmaterials for electrochemical energy conversion and storage devices, Adv. Mater. 20 (15) (2008) 2878-2887. [16] J.F. Ye,W. Liu, J.G. Cai, S.A. Chen, X.W. Zhao, H.H. Zhou, L.M. Qi, Nanoporous anatase TiO2 mesocrystals: Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior, J. Am. Chem. Soc. 133 (4) (2011) 933-940. [17] S.H. Liu, H.P. Jia, L. Han, J.L. Wang, P.F. Gao, D.D. Xu, J. Yang, S.N. Che, Nanosheetconstructed porous TiO2-B for advanced lithium ion batteries, Adv. Mater. 24 (24) (2012) 3201-3204. [18] A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater. 17 (7) (2005) 862-865. [19] L.P. An, G.R. Li, T. Hu, X.P. Gao, P.W. Shen, Electrochemical lithium storage of TiO2-B nanotubes before and after supporting of transition metal oxides, Chin. J. Inorg. Chem. 24 (6) (2008) 931-936. [20] J.M. Li, W. Wan, H.H. Zhou, J.J. Li, D.S. Xu, Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries, Chem. Commun. 47 (12) (2011) 3439-3441. [21] W. Zhuang, L.H. Lu, X.B. Wu, W. Jin, M. Meng, Y.D. Zhu, X.H. Lu, TiO2-B nanofibers with high thermal stability as improved anodes for lithium ion batteries, Electrochem. Commun. 27 (2013) 124-127. [22] M.Wagemaker,W.J.H. Borghols, F.M. Mulder, Large impact of particle size on insertion reactions. A case for anatase LixTiO2, J. Am. Chem. Soc. 129 (14) (2007) 4323-4327. [23] N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki, Enhancement of the highrate capability of solid-state lithium batteries by nanoscale interfacial modification, Adv. Mater. 18 (17) (2006) 2226-2229. [24] Z. Xiao, G. Hu, K. Du, Z. Peng, A facile route for synthesis of LiFePO4/C cathode material with nano-sized primary particles, Chin. J. Chem. Eng. 22 (5) (2014) 590-595. [25] H. Kim, M. Kim, T. Shin, H. Shin, J. Cho, TiO2@Sn core-shell nanotubes for fast and high density Li-ion storage material, Electrochem. Commun. 10 (11) (2008) 1669-1672. [26] K.S. Han, J.W. Lee, Y.M. Kang, J.Y. Lee, J.K. Kang, Nature of atomic and molecular nitrogen configurations in TiO2-xNx nanotubes and tailored energy-storage performance on selective doping of atomic N states, Small 4 (10) (2008) 1682-1686. [27] Y.M. Chiang, Building a better battery, Science 330 (6010) (2010) 1485-1486. [28] X. Su, Q.L. Wu, X. Zhan, J. Wu, S.Y. Wei, Z.H. Guo, Advanced titania nanostructures and composites for lithium ion battery, J. Mater. Sci. 47 (6) (2012) 2519-2534. [29] Z.X. Yang, G.D. Du, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, N. Sharma, H.K. Liu, TiO2(B) @anatase hybrid nanowires with highly reversible electrochemical performance, Electrochem. Commun. 13 (1) (2011) 46-49. [30] R. An, Q.M. Yu, L.Z. Zhang, Y.D. Zhu, X.J. Guo, S.Q. Fu, L.C. Li, C.S. Wang, X.M. Wu, C. Liu, X.H. Lu, Simple physical approach to reducing frictional and adhesive forces on a TiO2 surface via creating heterogeneous nanopores, Langmuir 28 (43) (2012) 15270-15277. [31] W. Li, C. Liu, Y.X. Zhou, Y. Bai, X. Feng, Z.H. Yang, L.H. Lu, X.H. Lu, K.Y. Chan, Enhanced photocatalytic activity in anatase/TiO2(B) core-shell nanofiber, J. Phys. Chem. C 112 (51) (2008) 20539-20545. [32] M. He, X.H. Lu, X. Feng, L. Yu, Z.-H. Yang, A simple approach to mesoporous fibrous titania from potassium dititanate, Chem. Commun. (19) (2004) 2202. [33] H. Liu, S. Ji, Y. Zheng, M. Li, H. Yang, Porous TiO2-coated magnetic core-shell nanocomposites: Preparation and enhanced photocatalytic activity, Chin. J. Chem. Eng. 21 (5) (2013) 569-576. [34] J.-Y. Shin, D. Samuelis, J. Maier, Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena, Adv. Funct. Mater. 21 (18) (2011) 3464-3472. [35] Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2(B): An anode for lithium-ion batteries, Angew. Chem. Int. Ed. 51 (9) (2012) 2164-2167. [36] S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang, S. Che, Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries, Adv. Mater. 24 (24) (2012) 3201-3204. [37] T. Beuvier, M. Richard-Plouet, L. Brohan, Accurate methods for quantifying the relative ratio of anatase and TiO2(B) nanoparticles, J. Phys. Chem. C 113 (31) (2009) 13703-13706. [38] F.F. Cao, X.L. Wu, S. Xin, Y.G. Guo, L.J. Wan, Facile synthesis of mesoporous TiO2-C nanosphere as an improved anodematerial for superior high rate 1.5 V rechargeable Li ion batteries containing LiFePO4-C cathode, J. Phys. Chem. C 114 (22) (2010) 10308-10313. |