[1] Y. Li, X. Cai, J. Zhou, P. Na, Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation, Appl. Surf. Sci. 324(2015) 179-187.[2] Y.-J. Zheng, F.-X. Xiao, Y. Wang, C.-H. Li, W. Xu, H.-S. Jian, Y.-T. Ma, Industrial experiment of copper electrolyte purification by copper arsenite, J. Cent. South Univ. Technol. 15(2008) 204-208.[3] X. Xiao, J. Mao, D. Cao, X. Shen, A.A. Volinsky, The role of trivalent arsenic in removal of antimony and bismuth impurities from copper electrolytes, Hydrometallurgy 125-126(2012) 76-80.[4] I. Nicolis, E. Curis, P. Deschamps, S. Benazeth, Arsenite medicinal use, metabolism, pharmacokinetics and monitoring in human hair, Biochimie 91(2009) 1260-1267.[5] H. Yang, W.-Y. Lin, W.-Y.K. Rajeshwar, Homogeneous and heterogeneous photocatalytic reactions involving As(Ⅲ) and As(V) species in aqueous media, J. Photochem. Photobiol. A Chem. 123(1999) 137-143.[6] Z. Xu, X. Meng, Size effects of nanocrystalline TiO2 on As(V) and As(Ⅲ) adsorption and As(Ⅲ) photooxidation, J. Hazard. Mater. 168(2009) 747-752.[7] M.I. Litter, M.E. Morgada, J. Bundschuh, Possible treatments for arsenic removal in Latin American waters for human consumption, Environ. Pollut. 158(2010) 1105-1118.[8] W. Choi, J. Yeo, J. Ryu, T. Tachikawa, T. Majima, Photocatalytic oxidation mechanism of As(Ⅲ) on TiO2:Unique role of As(Ⅲ) as a charge recombinant species, Environ. Sci. Technol. 44(2010) 9099-9104.[9] H. Fei, W. Leng, X. Li, X. Cheng', Y. Xu, J. Zhang, C. Cao, Photocatalytic oxidation of arsenite over TiO2:is superoxide the main oxidant in normal air-saturated aqueous solutions? Environ. Sci. Technol. 45(2011) 4532-4539.[10] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95(1995) 69-96.[11] S.T. Martin, H. Herrmann, W. Choi, M.R. Hoffmann, Time-resolved microwave conductivity. Part 1.-TiO2 photoreactivity and size quantization, J. Chem. Soc. Faraday Trans. 90(1994) 3315-3322.[12] P.J. Wardman, Reduction potentials of one-electron couples involving free radicals in aqueous solution, J. Phys. Chem. Ref. Data 18(1989) 1637-1755.[13] U.K. Klaning, B.H.J. Bielski, K. Sehesteds, Arsenic(IV). A pulse-radiolysis study, Inorg. Chem. 28(1989) 2717-2724.[14] I.K. Levy, M. Mizrah, G. Ruano, G. Zampieri, F.G. Requejo, M.I. Litter, TiO2-photocatalytic reduction of pentavalent and trivalent arsenic:production of elemental arsenic and arsine, Environ. Sci. Technol. 46(2012) 2299-2308.[15] C. Wang, R. Pagel, D.W. Bahnemann, J.K. Dohrmann, Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts:effect of intermittent illumination, platinization, and deoxygenation, J. Phys. Chem. B 108(2004) 14082-14092.[16] V. Lenoble, V. Deluchat, B. Serpaud, J.C. Bollinger, Arsenite oxidation and arsenate determination by the molybdene blue method, Talanta 61(2003) 267-276.[17] A. Samad, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco, Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst, J. Photochem. Photobiol. A Chem. 325(2016) 97-103.[18] C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants:mechanisms involving hydroxyl radical attack, J. Catal. 122(1990) 178-192.[19] J. Lilie, G. Beck, A. Henglein, Pulse radiolysis and polarography. Half-wave potentials for the oxidation and reduction of short-lived organic radicals at the mercury electrode, Ber. Bunsenges. Phys. Chem. 75(1971) 458-465.[20] C.L. Bianchi, S. Gatto, C. Pirola, A. Naldoni, A.D. Michele, G. Cerrato, V. Crocellà, V. Capucci, Photocatalytic degradation of acetone, acetaldehyde and toluene in gasphase:comparison between nano and micro-sized TiO2, Appl. Catal. B Environ. 146(2014) 123-130.[21] X. Zheng, L. Wei, Z. Zhang, Q. Jiang, Y. Wei, B. Xie, M. Wei, Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation, Int. J. Hydrog. Energy 34(2009) 9033-9041.[22] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution, J. Phys. Chem. Ref. Data 17(1988) 513-886.[23] C.F. Cullis, J.M. Francis, Y. Raef, A.J. Swallow, Studies of radiation-induced reactions of ethylene in aqueous solution. Ⅱ. Reactions in the presence of oxygen as studied by pulse radiolysis and γ-irradiation techniques, Proc. R. Soc. Lond. Ser. A 300(1967) 443-454.[24] M.G. Simic, Pulse radiolysis in study of oxygen radicals, Methods Enzymol. 186(1990) 89-100.[25] K. Shibuya, T. Ebata, K. Obi, I. Tanaka, Rate constant measurements for the reactions of HCO with NO and O2 in the gas phase, J. Phys. Chem. 81(1977) 2292-2294.[26] B. Maillard, K.U. Ingold, J.C. Scaiano, Rate constants for the reactions of free radicals with oxygen in solution, J. Am. Chem. Soc. 105(1983) 5095-5099.[27] H. Zegota, M.N. Schuchmann, C. von Sonntag, Elucidation of the mechanisms of peroxyl radical reactions in aqueous solutions using the pulse radiolysis technique, Radioanal. Nuclearchem. 101(1986) 199-207.[28] K. Sehested, H. Corfitzen, J. Holcman, E.J. Hart, Decomposition of ozone in aqueous acetic acid solutions (pH 0-4), J. Phys. Chem. 96(1992) 1005-1009. |