Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 146-167.DOI: 10.1016/j.cjche.2020.12.016
Previous Articles Next Articles
Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang
Received:
2020-09-29
Revised:
2020-12-17
Online:
2021-05-15
Published:
2021-02-28
Contact:
Chenjie Zhu, Hanjie Ying
Supported by:
Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang
通讯作者:
Chenjie Zhu, Hanjie Ying
基金资助:
Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang. Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 146-167.
Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang. Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge[J]. 中国化学工程学报, 2021, 29(2): 146-167.
[1] G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev. 106 (2006) 4044–4098. [2] L.T. Mika, E. Cséfalvay, Á. Németh, Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability, Chem. Rev. 118 (2018) 505–613. [3] P.I. Dalko, L. Moisan, In the golden age of organocatalysis, Angew. Chem., Int. Ed. 43 (2004) 5138–5175. [4] M.T. Reetz, Biocatalysis in organic chemistry and biotechnology: past, present, and future, J. Am. Chem. Soc. 135 (2013) 12480–12496. [5] R.A. Sheldon, P.C. Pereira, Biocatalysis engineering: the big picture, Chem. Soc. Rev. 46 (2017) 2678–2691. [6] M. Makkee, A.P.G. Kieboom, H.V. Bekkum, Combined action of enzyme and metal catalyst, applied to the preparation of D-mannitol, J. Chem. Soc., Chem. Commun. 198 (1984) 930–931. [7] J.V. Allen, J.M.J. Williams, Dynamic kinetic resolution with enzyme and palladium combinations, Tetrahedron Lett. 37 (1996) 1859–1862. [8] P.M. Dinh, J.A. Howarth, A.R. Hudnott, J.M.J. Williams, Catalytic racemisation of alcohols: applications to enzymatic resolution reactions, Tetrahedron Lett. 37 (1996) 7623–7626. [9] J. Muschiol, C. Peters, N. Oberleitner, M.D. Mihovilovic, U.T. Bornscheuer, F. Rudroff, Cascade catalysis-strategies and challenges en route to preparative synthetic biology, Chem. Commun. 51 (2015) 5798–5811. [10] J.H. Schrittwieser, S. Velikogne, M. Hall, W. Kroutil, Artificial biocatalytic linear cascades for preparation of organic molecules, Chem. Rev. 118 (2018) 270–348. [11] P. Yao, J. Ren, Q. Wu, D. Zhu, The latest progress and challenges in the research of chemical-biological fusion transformation reaction, Sci. Sin.: Chim. 45 (2015) 479–500. [12] X. Huang, M. Cao, H. Zhao, Integrating biocatalysis with chemocatalysis for selective transformations, Curr. Opin. Chem. Biol. 2020 (2020) 161–170. [13] F. Rudroff, M.D. Mihovilovic, H. Gröger, R. Snajdrova, H. Iding, U.T. Bornscheuer, Opportunities and challenges for combining chemo-and biocatalysis, Nat. Catal. 1 (2018) 12–22. [14] A. Bartoszewicz, N. Ahlsten, B. Martín-matute, Enantioselective synthesis of alcohols and amines by iridium-catalyzed hydrogenation, transfer hydrogenation, and related processes, Chem.-Eur. J. 19 (2013) 7274–7302. [15] Y. Ahn, S. Ko, M. Kim, J. Park, Racemization catalysts for the dynamic kinetic resolution of alcohols and amines, Coord. Chem. Rev. 252 (2008) 647–658. [16] B.M. Trost, M.L. Crawley, Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis, Chem. Rev. 103 (2003) 2921–2943. [17] U.M. Dzhemilev, A.G. Ibragimov, Hydrometallation of unsaturated compounds, ChemInform 40 (2008) 447–489. [18] M. Shibasaki, M. Kanai, Asymmetric synthesis of tertiary alcohols and alphatertiary amines via Cu-catalyzed C-C bond formation to ketones and ketimines, Chem. Rev. 108 (2008) 2853–2873. [19] H. Pellissier, Catalytic non-enzymatic kinetic resolution, Adv. Synth. Catal. 353 (2011) 1613–1666. [20] C.E. Muller, P.R. Schreiner, Organocatalytic enantioselective acyl transfer onto racemic as well as meso alcohols, amines, and thiols, Angew. Chem., Int. Ed. 50 (2011) 6012–6042. [21] M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Industrial methods for the production of optically active intermediates, Angew. Chem., Int. Ed. 43 (2004) 788–824. [22] F.F. Huerta, A.B. Minidis, J. Bäckvall, Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis, Chem. Soc. Rev. 30 (2001) 321–331. [23] A. Parvulescu, J. Janssens, J. Vanderleyden, D.D. Vos, Heterogeneous catalysts for racemization and dynamic kinetic resolution of amines and secondary alcohols, Top. Catal. 53 (2010) 931–941. [24] C.C. Gruber, I. Lavandera, K. Faber, W. Kroutil, From a racemate to a single enantiomer: deracemization by stereoinversion, Adv. Synth. Catal. 348 (2006) 1789–1805. [25] R. Marcos, B. Martín-Matute, Combined enzyme and transition-metal catalysis for dynamic kinetic resolutions, Isr. J. Chem. 52 (2012) 639–652. [26] D. Koszelewski, A. Brodzka, A. Żądlo, D. Paprocki, D. Trzepizur, M. Zysk, R. Ostaszewski, Dynamic kinetic resolution of 3-aryl-4-pentenoic acids, ACS Catal. 6 (2016) 3287–3292. [27] A.L.E. Larsson, B.A. Persson, J.E. Bäckvall, Enzymatic resolution of alcohols coupled with ruthenium-catalyzed racemization of the substrate alcohol, Angew. Chem., Int. Ed. 36 (1997) 1211–1212. [28] O. Pàmies, J.E. Bäckvall, Dynamic kinetic resolution of beta-azido alcohols. An efficient route to chiral aziridines and beta-amino alcohols, J. Org. Chem. 66 (2001) 4022–4025. [29] O. Pàmies, J.E. Bäckvall, Chemoenzymatic dynamic kinetic resolution of bhalo alcohols. An efficient route to chiral epoxides, J. Org. Chem. 67 (2002) 9006–9010. [30] K.S. Vallin, D.W. Posaric, Z. Hameršak, M.A. Svensson, A.B. Minidis, Efficient chemoenzymatic dynamic kinetic resolution of 1-heteroaryl ethanols, J. Org. Chem. 74 (2009) 9328–9336. [31] A.L. Fransson, L. Borén, O. Pàmies, J.E. Bäckvall, Kinetic resolution and chemoenzymatic dynamic kinetic resolution of functionalized c-hydroxy amides, J. Org. Chem. 70 (2005) 2582–2587. [32] B.L. Conley, M.K. Pennington-Boggio, E. Boz, T.J. Williams, Discovery, applications, and catalytic mechanisms of Shvo’s catalyst, Chem. Rev. 110 (2010) 2294–2312. [33] J.H. Koh, H.M. Jeong, J. Park, Efficient catalytic racemization of secondary alcohols, Tetrahedron Lett. 39 (1998) 5545–5548. [34] J.H. Koh, H.M. Jung, M. Kim, J. Park, Enzymatic resolution of secondary alcohols coupled with ruthenium-catalyzed racemization without hydrogen mediator, Tetrahedron Lett. 40 (1999) 6281–6284. [35] N.A. Cortez, G. Aguirre, M.P. Hake, R. Somanathan, Ruthenium(II) and rhodium(III) catalyzed asymmetric transfer hydrogenation (ATH) of acetophenone in isopropanol and in aqueous sodium formate using new chiral substituted aromatic monosulfonamide ligands derived from (1R,2R)-diaminocyclohexane, Tetrahedron: Asymmetry 19 (2008) 1304–1309. [36] S. Agrawal, E. Martínez-Castro, R. Marcos, B. Martín-Matute, Readily available ruthenium complex for efficient dynamic kinetic resolution of aromatic ahydroxy ketones, Org. Lett. 16 (2014) 2256–2259. [37] R.M. Haak, F. Berthiol, T. Jerphagnon, A.J. Gayet, C. Tarabiono, C.P. Postema, V. Ritleng, M. Pfeffer, D.B. Janssen, A.J. Minnaard, B.L. Feringa, J.G. Vries, Dynamic kinetic resolution of racemic b-haloalcohols: direct access to enantioenriched epoxides, J. Am. Chem. Soc. 130 (2008) 13508–13509. [38] F.G. Mutti, A. Orthaber, J.H. Schrittwieser, J.G. Vries, R. Pietschnig, W. Kroutil, Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents, Chem. Commun. 46 (2010) 8046–8048. [39] A. Berkessel, M.L. Sebastian-Ibarz, T.N. Müller, Lipase/aluminum-catalyzed dynamic kinetic resolution of secondary alcohols, Angew. Chem., Int. Ed. 45 (2006) 6567–6570. [40] E. Wingstrand, A. Laurell, L. Fransson, K. Hult, C. Moberg, Minor enantiomer recycling: metal catalyst, organocatalyst and biocatalyst working in concert, Chem.-Eur. J. 15 (2009) 12107–12113. [41] S. Akai, R. Hanada, N. Fujiwara, Y. Kita, M. Egi, One-pot synthesis of optically active allyl esters via lipase-vanadium combo catalysis, Org. Lett. 12 (2010) 4900–4903. [42] M. Egi, K. Sugiyama, M. Saneto, R. Hanada, K. Kato, S. Akai, A mesoporoussilica-immobilized oxovanadium cocatalyst for the lipase-catalyzed dynamic kinetic resolution of racemic alcohols, Angew. Chem., Int. Ed. 52 (2013) 3654–3658. [43] S. Wuyts, J. Wahlen, P.A. Jacobs, D.E. De Vos, Heterogeneous vanadium catalysts for racemization and chemoenzymatic dynamic kinetic resolution of benzylic alcohols, Green Chem. 9 (2007) 1104–1108. [44] M.T. Reetz, K. Schimossek, Lipase-catalyzed dynamic kinetic resolution of chiral amines: use of palladium as the racemization catalyst, Chimia 50 (1996) 668–669. [45] A.N. Parvulescu, P.A. Jacobs, D.E. De Vos, Palladium catalysts on alkaline-earth supports for racemization and dynamic kinetic resolution of benzylic amines, Chem.-Eur. J. 13 (2007) 2034–2043. [46] A.N. Parvulescu, D.D. Vos, P. Jacobs, Efficient dynamic kinetic resolution of secondary amines with Pd on alkaline earth salts and a lipase, Chem. Commun. 42 (2005) 5307–5309. [47] L.H. Andrade, A.V. Silva, E.C. Pedrozo, First dynamic kinetic resolution of selenium-containing chiral amines catalyzed by palladium (Pd/BaSO4) and Candida antartica lipase (CAL-B), Tetrahedron Lett. 50 (2009) 4331–4334. [48] O. Pàmies, A.H. Éll, J.S.M. Samec, N. Hermanns, J.-E. Bäckvall, An efficient and mild ruthenium-catalyzed racemization of amines: application to the synthesis of enantiomerically pure amines, Tetrahedron Lett. 43 (2002) 4699–4702. [49] V. Köhler, Y.M. Wilson, M. Dürrenberger, D. Ghislieri, E. Churakova, T. Quinto, L. Knörr, D. Häussinger, F. Hollmann, N.J. Turner, T.R. Ward, Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes, Nat. Chem. 5 (2013) 93–99. [50] A.N. Parvulescu, P.A. Jacobs, D.E. De Vos, Heterogeneous raney nickel and cobalt catalysts for racemization and dynamic kinetic resolution of amines, Adv. Synth. Catal. 350 (2008) 113–121. [51] B. Xia, G. Cheng, X. Lin, Q. Wu, Dynamic double kinetic resolution of amines and alcohols under the cocatalysis of raney nickel/candida antarctica lipase B: from concept to application, Eur. J. Org. Chem. 2014 (2014) 2917–2923. [52] O.E. Sepelgy, A. Brzozowska, M. Rueping, Asymmetric chemoenzymatic reductive acylation of ketones using a combined iron catalyzed Hydrogenation-Racemization and enzymatic resolution cascade, ChemSusChem. 10 (2017) 1664–1668. [53] S. Kara, J.H. Schrittwieser, F. Hollmann, M.B. Ansorge-Schumacher, Recent trends and novel concepts in cofactor-dependent biotransformations, Appl. Microbiol. Biotechnol. 98 (2014) 1517–1529. [54] C.J. Zhu, J.W. Fu, Z.T. Tan, H.J. Ying, Research progress of natural nicotinamide cofactor regeneration system and its artificial analogues, CIESC J. 69 (2018) 267–279. [55] U. Kölle, M. Grätzel, Organometallic rhodium (III) complexes as catalysts for the photoreduction of protons to hydrogen on colloidal TiO2, Angew. Chem., Int. Ed. 26 (1987) 567–570. [56] R. Ruppert, S. Herrmann, E. Steckhan, Very efficient reduction of NAD(P)+ with formate catalysed by cationic rhodium complexes, J. Chem. Soc., Chem. Commun. 17 (1988) 1150–1151. [57] F. Hollmann, B. Witholt, A. Schmid, [Cp*Rh(bpy)(H2O)]2+: a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes, J. Mol. Catal. B: Enzym. 2002 (2002) 167–176. [58] J. Canivet, G. Süss-Fink, P. Štĕpnička, Water-soluble phenanthroline complexes of rhodium, iridium and ruthenium for the regeneration of NADH in the enzymatic reduction of ketones, Eur. J. Inorg. Chem. 2007 (2007) 4736–4742. [59] J. Jee, S. Eigler, N. Jux, A. Zahl, R. Eldik, Influence of an extremely negatively charged porphyrin on the reversible binding kinetics of NO to Fe(III) and the subsequent reductive nitrosylation, Inorg. Chem. 46 (2007) 3336–3352. [60] H. Maid, P. Böhm, S.M. Huber, W. Bauer, W. Hummel, D.N. Jux, H. Gröger, Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen: a synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase, Angew. Chem., Int. Ed. 50 (2011) 2397–2400. [61] W. Greschner, C. Lanzerath, R. Tina, K. Tenbrink, S. Borchert, A. Mix, W. Hummel, H. Gröger, Artificial cofactor regeneration with an iron(III) porphyrin as NADH-oxidase mimic in the enzymatic oxidation of Lglutamate to a-ketoglutarate, J. Mol. Catal. B: Enzym. 2014 (2014) 10–15. [62] M. Poizat, I.W. Arends, F. Hollmann, On the nature of mutual inactivation between [Cp*Rh(bpy)(H2O)]2+ and enzymes-analysis and potential remedies, J. Mol. Catal. B: Enzym. 63 (2010) 149–156. [63] Y. Okamoto, V. Köehler, T.R. Ward, An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades, J. Am. Chem. Soc. 138 (2016) 5781–5784. [64] F. Hollmann, P. Lin, B. Witholt, A. Schmid, Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis, J. Am. Chem. Soc. 125 (2003) 8209–8217. [65] J. Bernard, E. Heerden, I.W. Arends, D.J. Opperman, F. Hollmann, Chemoenzymatic reduction of conjugated C=C double bonds, ChemCatChem 4 (2012) 196–199. [66] F. Hollmann, A. Schmid, Towards [Cp*Rh(bpy)(H2O)]2+-promoted P450 catalysis: direct regeneration of CytC, J. Inorg. Biochem. 103 (2009) 313–315. [67] M.M. Grau, M. Poizat, I.W. Arends, F. Hollmann, Phosphite-driven, [Cp*Rh(bpy)(H2O)]2+-catalyzed reduction of nicotinamide and flavin cofactors: characterization and application to promote chemoenzymatic reduction reactions, Appl. Organometal. Chem. 24 (2010) 380–385. [68] S.T. Ahmed, F. Parmeggiani, N.J. Weise, S.L. Flitsch, N.J. Turner, Chemoenzymatic synthesis of optically pure L-and D-biarylalanines through biocatalytic asymmetric amination and palladium-catalyzed arylation, ACS Catal. 5 (2015) 5410–5413. [69] S.C. Cosgrove, S. Hussain, N.J. Turner, S.P. Marsden, Synergistic chemo/biocatalytic synthesis of alkaloidal tetrahydroquinolines, ACS Catal. 8 (2018) 5570–5573. [70] M. Odachowski, M.F. Greaney, N.J. Turner, Concurrent biocatalytic oxidation and C-C bond formation via gold catalysis: one-pot alkynylation of N-alkyl tetrahydroisoquinolines, ACS Catal. 8 (2018) 10032–10035. [71] A. Cuetos, F.R. Bisogno, I. Lavandera, V. Gotor, Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols, Chem. Commun. 49 (2013) 2625–2627. [72] Z.J. Wang, K.N. Clary, R.G. Bergman, K.N. Raymond, F.D. Toste, A supramolecular approach to combining enzymatic and transition metal catalysis, Nat. Chem. 5 (2013) 100–103. [73] H. Sato, W. Hummel, H. Gröger, Cooperative catalysis of noncompatible catalysts through compartmentalization: wacker oxidation and enzymatic reduction in a one-pot process in aqueous media, Angew. Chem., Int. Ed. 54 (2015) 4488–4492. [74] M. Anderson, S. Afewerki, P. Berglund, A. Córdova, Total synthesis of capsaicin analogues from lignin-derived compounds by combined heterogeneous metal, organocatalytic and enzymatic cascades in one pot, Adv. Synth. Catal. 356 (2014) 2113–2118. [75] C. Asta, D. Schmidt, J. Conrad, W. Frey, U. Beifuss, Combination of enzymeand Lewis acid-catalyzed reactions: a new method for the synthesis of 6,7-dihydrobenzofuran-4(5H)-ones starting from 2,5-dimethylfuran and 1,3-cyclohexanediones, Org. Biomol. Chem. 11 (2013) 5692–5701. [76] T.Z. Li, Z.J. Tang, H.L. Wei, Z.J. Tan, P. Liu, J.L. Li, Y.Y. Zheng, J.P. Lin, W.D. Liu, H. F. Jiang, H.F. Liu, L.L. Zhu, Y.H. Ma, Totally atom-economical synthesis of lactic acid from formaldehyde: combined bio-carboligation and chemorearrangement without the isolation of intermediates, Green Chem. 20 (2020) 6809–6814. [77] J.H. Schrittwieser, J. Sattler, V. Resch, F.G. Mutti, W. Kroutil, Recent biocatalytic oxidation-reduction cascades, Curr. Opin. Chem. Biol. 15 (2011) 249–256. [78] N.J. Turner, Enantioselective oxidation of C-O and C-N bonds using oxidases, Chem. Rev. 111 (2011) 4073–4087. [79] N.J. Turner, Deracemisation methods, Curr. Opin. Chem. Biol. 14 (2010) 115–121. [80] J.H. Schrittwieser, B. Groenendaal, V. Resch, D. Ghislieri, S. Wallner, E. Fischereder, E. Fuchs, B. Grischek, J.H. Sattler, P. Macheroux, N.J. Turner, W. Kroutil, Deracemization by simultaneous bio-oxidative kinetic resolution and stereoinversion, Angew. Chem., Int. Ed. 53 (2014) 3731–3734. [81] F. Poulhès, N. Vanthuyne, M.P. Bertrand, S. Gastaldi, G. Gil, Chemoenzymatic dynamic kinetic resolution of primary amines catalyzed by CAL-B at 38–40 ℃, J. Org. Chem. 76 (2011) 7281–7286. [82] L.E. Blidi, N. Vanthuyne, D. Siri, S. Gastaldi, M.P. Bertrand, G. Gil, Switching from (R)-to (S)-selective chemoenzymatic DKR of amines involving sulfanyl radical-mediated racemization, Org. Biomol. Chem. 8 (2010) 4165–4168. [83] L.E. Blidi, M. Nechab, N. Vanthuyne, S. Gastaldi, M.P. Bertrand, G. Gil, En route to (S)-selective chemoenzymatic dynamic kinetic resolution of aliphatic amines. One-pot KR/racemization/KR sequence leading to (S)-amides, J. Org. Chem. 74 (2009) 2901–2903. [84] S. Gastaldi, S. Escoubet, N. Vanthuyne, G. Gil, M.P. Bertrand, Dynamic kinetic resolution of amines involving biocatalysis and in situ free-radical-mediated racemization, Org. Lett. 9 (2007) 837–839. [85] D. Arosio, A. Caligiuri, P. D’Arrigo, G. Pedrocchi-Fantoni, C. Rossi, C. Saraceno, S. Servi, D. Tessaro, Chemo-enzymatic dynamic kinetic resolution of amino acid thioesters, Adv. Synth. Catal. 349 (2007) 1345–1348. [86] P. D’Arrigo, L. Cerioli, A. Fiorati, S. Servi, F. Viani, D. Tessaro, Naphthyl-L-aamino acids via chemo-enzymatic dynamic kinetic resolution, Tetrahedron: Asymmetry 23 (2012) 938–944. [87] P. D’Arrigo, L. Cerioli, S. Servi, F. Viani, D. Tessaro, Synergy between catalysts: enzymes and bases. DKR of non-natural amino acids derivatives, Catal. Sci. Technol. 2 (2012) 1606–1616. [88] S. Aksu, I.W. Arends, F. Hollmann, A new regeneration system for oxidized nicotinamide cofactors, Adv. Synth. Catal. 351 (2009) 1211–1216. [89] G. Hilt, B. Lewall, G. Montero, J.H.P. Utley, E. Steckhan, Efficient in-situ redox catalytic NAD(P)+ regeneration in enzymatic synthesis using transition-metal complexes of 1,10-phenanthroline-5,6-dione and its N-monomethylated derivative as catalysts, Liebigs Ann. 1997 (1997) 2289–2296. [90] J.B. Jones, K.E. Taylor, Use of pyridinium and flavin derivatives for recycling of catalystic amounts of NAD+ during preparative-scale horse liver alchohol dehydrogenase-catalysed oxidations of alcohols, J. Chem. Soc., Chem. Commun. 6 (1973) 205–206. [91] S. Gargiulo, I.W.C.E. Arends, F. Hollmann, A photoenzymatic system for alcohol oxidation, ChemCatChem 3 (2011) 338–342. [92] C. Zhu, Q. Li, L. Pu, Z. Tan, K. Guo, H. Ying, P. Ouyang, Nonenzymatic and metal-free organocatalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen, ACS Catal. 6 (2016) 4989–4994. [93] Z. Tan, C. Zhu, J. Fu, X. Zhang, M. Li, H. Ying, Regulating cofactor balance in vivo with a synthetic flavin analogue, Angew. Chem., Int. Ed. 57 (2018) 16464–16468. [94] Y. Sambongi, H. Nitta, K. Ichihashi, M. Futai, I. Ueda, A novel water-soluble Hantzsch 1,4-dihydropyridine compound that functions in biological processes through NADH regeneration, J. Org. Chem. 67 (2002) 3499–3501. [95] C.E. Paul, I.W. Arends, F. Hollmann, Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry, ACS Catal. 4 (2014) 788–797. [96] T. Knaus, C.E. Paul, C.W. Levy, S. Vries, F.G. Mutti, F. Hollmann, N.S. Scrutton, Better than nature: nicotinamide biomimetics that outperform natural coenzymes, J. Am. Chem. Soc. 138 (2016) 1033–1039. [97] C.E. Paul, S. Gargiulo, D.J. Opperman, I. Lavandera, V. Gotor-Fernández, V. Gotor, A. Taglieber, I.W. Arends, F. Hollmann, Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases, Org. Lett. 15 (2013) 180–183. [98] C.E. Paul, D. Tischler, A. Riedel, T. Heine, N. Itoh, F. Hollmann, Nonenzymatic regeneration of styrene monooxygenase for catalysis, ACS Catal. 5 (2015) 2961–2965. [99] M. Ismail, L. Schroeder, M. Frese, T. Kottke, F. Hollmann, C.E. Paul, N. Sewald, Straightforward regeneration of reduced flavin adenine dinucleotide required for enzymatic tryptophan halogenation, ACS Catal. 9 (2019) 1389–1395. [100] S. Witayakran, L.T. Gelbaum, A.J. Ragauskas, Cascade synthesis of benzofuran derivatives via laccase oxidation-Michael addition, Tetrahedron 63 (2007) 10958–10962. [101] S. Suljić, J. Pietruszka, D. Worgull, Asymmetric bio-and organocatalytic cascade reaction-laccase and secondary amine-catalyzed a-arylation of aldehydes, Adv. Synth. Catal. 357 (2015) 1822–1830. [102] G. Rulli, N. Duangdee, K. Baer, W. Hummel, A. Berkessel, H. Gröger, Direction of kinetically versus thermodynamically controlled organocatalysis and its application in chemoenzymatic synthesis, Angew. Chem., Int. Ed. 50 (2011) 7944–7947. [103] M. Heidlindemann, G. Rulli, A. Berkessel, W. Hummel, H. Gröger, Combination of asymmetric organo-and biocatalytic reactions in organic media using immobilized catalysts in different compartments, ACS Catal. 4 (2014) 1099–1103. [104] J.M.R. Silva, T.B. Bitencourt, M.A. Moreira, M.G. Nascimento, Enzymatic epoxidation of b-caryophyllene using free or immobilized lipases or mycelia from the Amazon region, J. Mol. Catal. B: Enzym. 2013 (2013) 48–54. [105] R.N. Re, J.C. Proessdorf, J.J.L. Clair, M. Subileau, M.D. Burkart, Tailoring chemoenzymatic oxidation via in situ peracids, Org. Biomol. Chem. 17 (2019) 9418–9424. [106] K. Kedziora, A. Díaz-Rodríguez, I. Lavandera, V. Gotor-Fernández, V. Gotor, Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives, Green Chem. 16 (2014) 2448–2453. [107] L. Martínez-Montero, V. Gotor, V. Gotor-Fernández, I. Lavandera, Mild chemoenzymatic oxidation of allylic sec-alcohols. Application to biocatalytic stereoselective redox isomerizations, ACS Catal. 8 (2018) 2413–2419. [108] E. Liardo, N. Ríos-Lombardía, F. Morís, F. Rebolledo, Hybrid organo-and biocatalytic process for the asymmetric transformation of alcohols into amines in aqueous medium, ACS Catal 7 (2017) 4768–4774. [109] S.H. Lee, J.H. Kim, C.B. Park, Coupling photocatalysis and redox biocatalysis toward biocatalyzed artificial photosynthesis, Chem. Eur. J. 19 (2013) 4392–4406. [110] J.S. Lee, S.H. Lee, J.H. Kim, C.B. Park, Artificial photosynthesis on a chip: microfluidic cofactor regeneration and photoenzymatic synthesis under visible light, Lab Chip 11 (2011) 2309–2311. [111] G.L. Wang, J.J. Xu, H.Y. Chen, Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation, Biosens. Bioelectron. 24 (2009) 2494–2498. [112] M. Hambourger, G. Kodis, M.D. Vaughn, G.F. Moore, D. Gust, A.L. Moore, T.A. Moore, Solar energy conversion in a photoelectrochemical biofuel cell, Dalton Trans. 45 (2009) 9979–9989. [113] Q. Shi, D. Yang, Z. Jiang, J. Li, Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles, J. Mol. Catal. B: Enzym. 43 (2006) 44–48. [114] A. Brune, G. Jeong, P.A. Liddell, T. Sotomura, T.A. Moore, A.L. Moore, D. Gust, Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell, Langmuir 20 (2004) 8366–8371. [115] J.H. Kim, S.H. Lee, J.S. Lee, M. Lee, C.B. Park, Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis, Chem. Commun. 47 (2011) 10227–10229. [116] J.L. Rickus, P.L. Chang, A.J. Tobin, J.I. Zink, B. Dunn, Photochemical coenzyme regeneration in an enzymatically active optical material, J. Phys. Chem. B. 108 (2004) 9325–9332. [117] Y. Dilgin, L. Gorton, G. Nisli, Photoelectrocatalytic oxidation of NADH with electropolymerized toluidine blue O, Electroanalysis 19 (2007) 286–293. [118] J.A. Kim, S. Kim, J. Lee, J.O. Baeg, J. Kim, Photochemical production of NADH using cobaloxime catalysts and visible-light energy, Inorg. Chem. 51 (2012) 1–7. [119] T.N. Burai, A.J. Panay, H. Zhu, T. Lian, S. Lutz, Light-driven quantum dotmediated regeneration of FMN to drive reduction of ketoisophorone by old yellow enzyme, ACS Catal. 2 (2012) 667–670. [120] Y. Kim, K. Ikebukuro, H. Muguruma, I. Karube, Photogeneration of NADPH by oligothiophenes coupled with ferredoxin-NADP reductase, J. Biotechnol. 59 (1998) 213–220. [121] C.B. Park, S.H. Lee, E. Subramanian, B.B. Kale, S.M. Lee, J.O. Baeg, Solar energy in production of L-glutamate through visible light active photocatalyst-redox enzyme coupled bioreactor, Chem. Commun. 42 (2008) 5423–5425. [122] G.R. Hafenstine, K. Ma, A.W. Harris, O. Yehezkeli, E. Park, D.W. Domaille, J.N. Cha, A.P. Goodwin, Multicatalytic, light-driven upgrading of butanol to 2-ethylhexenal and hydrogen under mild aqueous conditions, ACS Catal. 7 (2017) 568–572. [123] C.S. Morrisona, W.B. Armigere, D.R. Doddse, J.S. Dordickabcd, M.A.G. Koffas, Improved strategies for electrochemical 1,4-NAD(P)H2 regeneration: a new era of bioreactors for industrial biocatalysis, Biotechnol. Adv. 36 (2018) 120–131. [124] A. Damian, K. Maloo, S. Omanovic, Direct electrochemical regeneration of NADH on Au, Cu and Pt-Au electrodes, Chem. Biochem. Eng. Q 21 (2007) 21–32. [125] E. Siu, K. Won, C.B. Park, Electrochemical regeneration of NADH using conductive vanadia-silica xerogels, Biotechnol. Prog. 23 (2007) 293–296. [126] Y.H. Kim, Y.J. Yoo, Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode, Enzyme Microb. Technol. 44 (2009) 129–134. [127] L. Zhang, N. Vilà, G.W. Kohring, A. Walcarius, M. Etienne, Covalent immobilization of (2,2’-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complex on a porous carbon electrode for efficient electrocatalytic NADH regeneration, ACS Catal. 7 (2017) 4386–4394. [128] A. Damian, S. Omanovic, Electrochemical reduction of NAD+ on a polycrystalline gold electrode, J. Mol. Catal. A: Chem. 253 (2006) 222–233. [129] Z.C. Litman, Y. Wang, H. Zhao, J.F. Hartwig, Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis, Nature 560 (2018) 355–359. [130] S.K. Kuk, R.K. Singh, D.H. Nam, R. Singh, J.K. Lee, C.B. Park, Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade, Angew. Chem. Int. Ed. 56 (2017) 3827–3832. [131] U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 485 (2012) 185–194. [132] C.K. Savile, J.M. Janey, E.C. Mundorff, J.C. Moore, S. Tam, W.R. Jarvis, J.C. Colbeck, A. Krebber, F.J. Fleitz, J. Brands, P.N. Devine, G.W. Huisman, G.J. Hughes, Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture, Science 329 (2010) 305–309. [133] A.A. Desai, Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis, Angew. Chem. Int. Ed. 50 (2011) 1974–1976. [134] D. Ghislieri, A.P. Green, M. Pontini, S.C. Willies, I. Rowles, A. Frank, G. Grogan, N.J. Turner, Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products, J. Am. Chem. Soc. 135 (2013) 10863–10869. [135] J. Latham, J.M. Henry, H.H. Sharif, B.R.K. Menon, S.A. Shepherd, M.F. Greaney, J. Micklefield, Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation, Nat. Commun. 7 (2016) 1–8. [136] S.E. Hooshmand, R. Afshari, D.J. Ramón, R.S. Varma, Deep eutectic solvents: cutting-edge applications in cross-coupling reactions, Green Chem. 22 (2020) 3668–3692. [137] J. Paris, A. Telzerow, N. Ríos-Lombardía, K. Steiner, H. Schwab, F. Morís, H. Gröger, J. González-Sabín, Enantioselective one-pot synthesis of biarylsubstituted amines by combining palladium and enzyme catalysis in deep eutectic solvents, ACS Sustain. Chem. Eng. 7 (2019) 5486–5493. [138] L. Cicco, N. Ríos-Lombardía, M.J. Rodríguez-Álvarez, F. Morís, F.M. Perna, V. Capriati, J. García-Álvarez, J. González-Sabín, Programming cascade reactions interfacing biocatalysis with transition-metal catalysis in Deep Eutectic Solvents as biorenewable reaction media, Green Chem. 20 (2018) 3468–3475. [139] F. Dumeignil, M. Guehl, A. Gimbernat, M. Capron, N.L. Ferreira, R. Froidevaux, J.S. Girardon, R. Wojcieszak, P. Dhulster, D. Delcroix, From sequential chemoenzymatic synthesis to integrated hybrid catalysis: taking the best of both worlds to open up the scope of possibilities for a sustainable future, Catal. Sci. Technol. 8 (2018) 5708–5734. [140] C.M. Clouthier, J.N. Pelletier, Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis, Chem. Soc. Rev. 41 (2012) 1585–1605. [141] J. Li, A. Amatuni, H. Renata, Recent advances in the chemoenzymatic synthesis of bioactive natural products, Curr. Opin. Chem. Biol. 55 (2020) 111–118. [142] R.J. Kazlauskas, U.T. Bornscheuer, Finding better protein engineering strategies, Nat. Chem. Biol. 5 (2009) 526–529. [143] M.S. Packer, D.R. Liu, Methods for the directed evolution of proteins, Nat. Rev. Genet. 16 (2015) 379–394. [144] Y. Okamoto, V. Köhler, C.E. Paul, F. Hollmann, T.R. Ward, Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme, ACS Catal. 6 (2016) 3553–3557. [145] H.J. Davis, T.R. Ward, Artificial metalloenzymes: challenges and opportunities, ACS Cent. Sci. 5 (2019) 1120–1136. [146] F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M.M. Pellizzoni, V. Lebrun, R. Reuter, V. Köhler, J.C. Lewis, T.R. Ward, Artificial metalloenzymes: reaction scope and optimization strategies, Chem. Rev. 118 (2018) 142–231. |
[1] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[2] | Xueping Liu, Ping Xue, Feng Jia, Dongya Qiu, Keren Shi, Weiwei Zhang. Tailoring polymeric composite gel beads-encapsulated microorganism for efficient degradation of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 301-306. |
[3] | Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 136-145. |
[4] | Bekir Engin Eser, Yan Zhang, Li Zong, Zheng Guo. Self-sufficient Cytochrome P450s and their potential applications in biotechnology [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 121-135. |
[5] | Jing Wang, Yongqin Lv. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 317-325. |
[6] | Yifei Zhang, Henry Hess. Microenvironmental engineering: An effective strategy for tailoring enzymatic activities [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2028-2036. |
[7] | Liqun Shen, Ran Cang, Guang Yang, Anqi Zeng, He Huang, Zhigang Zhang. Aureobasidium subglaciale F134 is a bifunctional whole-cell biocatalyst for Baeyer-Villiger oxidation or selective carbonyl reduction controllable by temperature [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3044-3051. |
[8] | Xinlei Wei, Pingping Han, Chun You. Facilitation of cascade biocatalysis by artificial multi-enzyme complexes—A review [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2799-2809. |
[9] | Mohammad Hossein Sheikh-Mohseni, Sajjad Sedaghat, Pirouz Derakhshi, Aliakbar Safekordi. Green bio-synthesis of Ni/montmorillonite nanocomposite using extract of Allium jesdianum as the nano-catalyst for electrocatalytic oxidation of methanol [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2555-2565. |
[10] | Zheyu Wang, Yupei Jian, Yilei Han, Zhongwang Fu, Diannan Lu, Jianzhong Wu, Zheng Liu. Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2499-2506. |
[11] | Yifeng Li, Chunyu Zhang, Yan Sun. Zwitterionic polymer-coated porous poly(vinyl acetate-divinyl benzene) microsphere: A new support for enhanced performance of immobilized lipase [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 242-248. |
[12] | Huanru Ding, Weirui Zhao, Changjiang Lü, Jun Huang, Sheng Hu, Shanjing Yao, Lehe Mei, Jinbo Wang, Jiaqi Mei. Biosynthesis of 4-hydroxyphenylpyruvic acid from L-tyrosine using recombinant Escherichia coli cells expressing membrane bound L-amino acid deaminase [J]. Chin.J.Chem.Eng., 2018, 26(2): 380-385. |
[13] | Liya Zhou, Haixia Mou, Jing Gao, Li Ma, Ying He, Yanjun Jiang. Preparation of cross-linked enzyme aggregates of nitrile hydratase ES-NHT-118 from E. coli by macromolecular cross-linking agent [J]. , 2017, 25(4): 487-492. |
[14] | Shuangshuang Gu, Jun Wang, Xianbin Wei, Hongsheng Cui, Xiangyang Wu, Fuan Wu. Enhancement of Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquid with DMSO Co-solvent [J]. , 2014, 22(11/12): 1314-1321. |
[15] | WANG Jun, LI Jing, ZHANG Leixia, GU Shuangshuang, WU Fuan. Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquids:Effect of Specific Ions and Reaction Parameters [J]. Chin.J.Chem.Eng., 2013, 21(12): 1376-1385. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 224
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||