Chinese Journal of Chemical Engineering ›› 2021, Vol. 38 ›› Issue (10): 114-122.DOI: 10.1016/j.cjche.2021.07.004
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Lihua Qian, Guojun Lan, Xiaoyan Liu, Zhenqing Li, Ying Li
Received:
2020-09-11
Revised:
2021-01-19
Online:
2021-12-02
Published:
2021-10-28
Contact:
Guojun Lan, Ying Li
Supported by:
Lihua Qian, Guojun Lan, Xiaoyan Liu, Zhenqing Li, Ying Li
通讯作者:
Guojun Lan, Ying Li
基金资助:
Lihua Qian, Guojun Lan, Xiaoyan Liu, Zhenqing Li, Ying Li. Aqueous-phase hydrogenation of levulinic acid over carbon layer protected silica-supported cobalt-ruthenium catalysts[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 114-122.
Lihua Qian, Guojun Lan, Xiaoyan Liu, Zhenqing Li, Ying Li. Aqueous-phase hydrogenation of levulinic acid over carbon layer protected silica-supported cobalt-ruthenium catalysts[J]. 中国化学工程学报, 2021, 38(10): 114-122.
[1] T. Werpy, G. Petersen, Top Value-added Chemicals From Biomass: Volume I - Results of Screening for Potential Candidates From Sugars and Synthesis Gas, Nat. Gas. (2004) https://www.osti.gov/biblio/15008859/ [2] A. Osatiashtiani, A.F. Lee, K. Wilson, Recent advances in the production of γ-valerolactone from biomass-derived feedstocks via heterogeneous catalytic transfer hydrogenation, J. Chem. Technol. Biot. 92 (6) (2017) 1125-1135 [3] C.-B. Chen, M.-Y. Chen, B. Zada, Y.-J. Ma, L. Yan, Q. Xu, W.-Z. Li, Q.-X. Guo, Y. Fu, Effective conversion of biomass-derived ethyl levulinate into γ-valerolactone over commercial zeolite supported Pt catalysts, RSC Adv. 6 (113) (2016) 112477-112485 [4] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107 (6) (2007) 2411-2502 [5] W.R.H. Wright, R. Palkovits, Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone, ChemSusChem 5 (9) (2012) 1657-1667 [6] Z. Yang, Y.B. Huang, Q.X. Guo, Y. Fu, RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature, Chem. Commun. 49 (46) (2013) 5328-5330 [7] M. Sudhakar, M. Lakshmi Kantam, V. Swarna Jaya, R. Kishore, K.V. Ramanujachary, A. Venugopal, Hydroxyapatite as a novel support for Ru in the hydrogenation of levulinic acid to γ-valerolactone, Catal. Commun. 50 (2014) 101-104 [8] K. Jiang, D. Sheng, Z.H. Zhang, J. Fu, Z.Y. Hou, X.Y. Lu, Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al2O3 supported Ni catalyst, Catal. Today 274 (2016) 55-59 [9] A.M. Hengne, C.V. Rode, Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone, Green Chem. 14 (4) (2012) 1064-1072 [10] Q. Xu, X. Li, T. Pan, C. Yu, J. Deng, Q. Guo, Y. Fu, Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone, Green Chem. 18 (5) (2016) 1287-1294 [11] G.B. Kasar, N.S. Date, P.N. Bhosale, C.V. Rode, Steering the ester and γ-valerolactone selectivities in levulinic acid hydrogenation, Energy Fuels 32 (6) (2018) 6887-6900 [12] M. Audemar, C. Ciotonea, K. De?Oliveira?Vigier, S. Royer, A. Ungureanu, B. Dragoi, E. Dumitriu, F. Jérôme, Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA-15 catalyst, ChemSusChem 8 (11) (2015) 1885-1891 [13] X. Long, P. Sun, Z. Li, R. Lang, C. Xia, F. Li, Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone, Chin. J. Catal. 36 (9) (2015) 1512-1518 [14] K. Yan, A.C. Chen, Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst, Fuel 115 (2014) 101-108 [15] H.C. Zhou, J.L. Song, H.L. Fan, B.B. Zhang, Y.Y. Yang, J.Y. Hu, Q.G. Zhu, B.X. Han, Cobalt catalysts: very efficient for hydrogenation of biomass-derived ethyl levulinate to gamma-valerolactone under mild conditions, Green Chem. 16 (8) (2016) 3870-3875 [16] R.R. Gowda, E.-X. Chen, Recyclable earth-abundant metal nanoparticle catalysts for selective transfer hydrogenation of levulinic acid to produce γ-valerolactone, ChemSusChem 9 (2) (2016) 181-185 [17] K. Murugesan, A.S. Alshammari, M. Sohail, R.V. Jagadeesh, Levulinic acid derived reusable cobalt-nanoparticles-catalyzed sustainable synthesis of γ-valerolactone, ACS Sustain. Chem. Eng. 7 (17) (2019) 14756-14764 [18] Y. Cen, S. Zhu, J. Guo, J. Chai, W. Jiao, J. Wang, W. Fan, Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals, RSC Adv. 8 (17) (2018) 9152-9160 [19] C. Michel, J. Zaffran, A.M. Ruppert, J. Matras-Michalska, M. Jadrzejczyk, J. Grams, P. Sautet, Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone, Chem. Commun. 50 (83) (2014) 12450-12453 [20] J.J. Tan, J.L. Cui, T.S. Deng, G.Q. Ding, Y.L. Zhu, Y.W. Li, Water-promoted hydrogenation of levulinic acid to gamma-valerolactone on supported ruthenium catalyst, ChemCatChem 7 (3) (2015) 508-512 [21] P. Sun, G. Gao, Z. Zhao, C. Xia, F. Li, Stabilization of cobalt catalysts by embedment for efficient production of valeric biofuel, ACS Catal. 4 (11) (2014) 4136-4142 [22] R.M. Deshpande, V.V. Buwa, C.V. Rode, R.V. Chaudhari, P.L. Mills, Tailoring of activity and selectivity using bimetallic catalyst in hydrogenation of succinic acid, Catal. Commun. 3 (7) (2002) 269-274 [23] Y. Zhu, S. Zhang, Y. Ye, X. Zhang, L. Wang, W. Zhu, F. Cheng, F.(. Tao, Catalytic conversion of carbon dioxide to methane on ruthenium-cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances, ACS Catal. 2 (11) (2012) 2403-2408 [24] D. Liu, W.N.E. Cheo, Y.W.Y. Lim, A. Borgna, R. Lau, Y. Yang, A comparative study on catalyst deactivation of nickel and cobalt incorporated MCM-41 catalysts modified by platinum in methane reforming with carbon dioxide, Catal. Today 154 (3-4) (2010) 229-236 [25] A. Tavasoli, A.N. Pour, M.G. Ahangari, Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer-Tropsch synthesis catalyst, J. Nat. Gas. Chem. 19 (6) (2010) 653-659 [26] R. Phienluphon, L. Shi, J. Sun, W.Q. Niu, P. Lu, P.F. Zhu, T. Vitidsant, Y. Yonwyama, Q.Y. Chen, N. Tsubaki, Ruthenium promoted cobalt catalysts prepared by an autocombustion method directly used for Fischer-Tropsch synthesis without further reduction, Catal. Sci. Technol. 4 (9) (2014) 3099-3107 [27] C.J. Bertole, C.A. Mims, G. Kiss, Support and rhenium effects on the intrinsic site activity and methane selectivity of cobalt Fischer-Tropsch catalysts, J. Catal. 221 (1) (2004) 191-203 [28] I. Sádaba, M. López Granados, A. Riisager, E. Taarning, Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions, Green Chem. 17 (8) (2015) 4133-4145 [29] C. Weidenthaler, Pitfalls in the characterization of nanoporous and nanosized materials, Nanoscale 3 (3) (2011) 792-810 [30] X. Wang, G. Lan, H. Liu, Y. Zhu, Y. Li, Effect of acidity and ruthenium species on catalytic performance of ruthenium catalysts for acetylene hydrochlorination, Catal. Sci. Technol. 8 (23) (2018) 6143-6149 [31] J. Shariati, A. Haghtalab, A. Mosayebi, Fischer-Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method, J. Energy Chem. 28 (2019) 9-22 [32] Q. Cai, J. Li, Catalytic properties of the Ru promoted Co/SBA-15 catalysts for Fischer-Tropsch synthesis, Catal. Commun. 9 (10) (2008) 2003-2006 [33] D. Xu, W. Li, H. Duan, Q. Ge, H. Xu, Reaction performance and characterization of Co/Al2O3 Fischer-Tropsch catalysts promoted with Pt, Pd and Ru, Catal. Lett. 102 (3-4) (2005) 229-235 [34] Z. Luo, Z. Zheng, L. Li, Y.-T. Cui, C. Zhao, Bimetallic Ru-Ni catalyzed aqueous-phase guaiacol hydrogenolysis at low H2 pressures, ACS Catal. 7 (12) (2017) 8304-8313 [35] N.H. Chinh, H. Lee, J. Lee, J.H. Kwak, K. An, Mesoporous mixed CuCo oxides as robust catalysts for liquid-phase furfural hydrogenation, Appl. Catal. A-Gen. 571 (2019) 118-126 [36] Y. Liu, K. Zhou, M. Lu, L. Wang, Z. Wei, X. Li, Acidic/basic oxides-supported cobalt catalysts for one-pot synthesis of isophorone diamine from hydroamination of isophorone nitrile, Ind. Eng. Chem. Res. 54 (37) (2015) 9124-9132 [37] H. Wu, J. Geng, H. Ge, Z. Guo, Y. Wang, G. Zheng, Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts, Adv. Energy Mater. 6 (20) (2016) 1600794 [38] J.Y. Shen, A. Adnot, S. Kaliaguine, An ESCA study of the interaction of oxygen with the surface of ruthenium, Appl. Surf. Sci. 51 (1-2) (1991) 47-60 [39] B. Folkesson, M. Bjorøy, J. Pappas, S. Skaarup, R. Aaltonen, C. Swahn, ESCA studies on the charge distribution in some dinitrogen complexes of Rhenium, Iridium, Ruthenium, and Osmium, Acta Chem. Scand. 27 (1973) 287-302 [40] J.C. Fuggle, T.E. Madey, M. Steinkilberg, D. Menzel, Photoelectron spectroscopic studies of adsorption of CO and oxygen on Ru(001), Surf. Sci. 52 (3) (1975) 521-541 [41] D.J. Morgan, Resolving ruthenium: XPS studies of common ruthenium materials, Surf. Interface Anal. 47 (2015) 1072-1079 [42] I. Sádaba, M.L. Granados, A. Riisager, E. Tarrning, Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions, Green Chem. 17 (8) (2015) 4133-4145 |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[2] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[3] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[4] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[5] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[6] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[7] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[8] | Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 248-256. |
[9] | Lu Lv, Min Zhao, Yanan Liu, Yufei He, Dianqing Li. Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via P-O-Al bond for liquid hydrogenation reaction [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 232-242. |
[10] | Junru Liu, Rui Hu, Xinlei Liu, Qunfeng Zhang, Guanghua Ye, Zhijun Sui, Xinggui Zhou. Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 165-173. |
[11] | Xiangjun Li, Shujun Li, Xiaoping Wang, Muhammad Asif Nawaz, Dianhua Liu. Polyoxymethylene dimethyl ethers synthesis from methanol and formaldehyde solution over one-pot synthesized spherical mesoporous sulfated zirconia [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 161-172. |
[12] | Qunhong Liu, Jiangtao Yang, Hongwei Zhang, Hongming Sun, Shuzheng Wu, Bingqing Ge, Rong Wang, Pei Yuan. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 41-50. |
[13] | Ning Liu, Xingping Liu, Fumin Wang, Feng Xin, Mingshuai Sun, Yi Zhai, Xubin Zhang. CFD simulation study of the effect of baffles on the fluidized bed for hydrogenation of silicon tetrachloride [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 219-228. |
[14] | Chunhua Zhang, Zhengyan Qu, Hong Jiang, Rizhi Chen, Weihong Xing. Nb2O5 promoted Pd/AC catalyst for selective phenol hydrogenation to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 87-93. |
[15] | Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 62-69. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||