Chinese Journal of Chemical Engineering ›› 2023, Vol. 53 ›› Issue (1): 332-345.DOI: 10.1016/j.cjche.2022.01.014
• Review • Previous Articles Next Articles
Qingming Ma1, Jianhong Xu2
Received:
2021-10-19
Revised:
2022-01-04
Online:
2023-04-08
Published:
2023-01-28
Contact:
Qingming Ma,E-mail:qma@qdu.edu.cn;Jianhong Xu,E-mail:xujianhong@tsinghua.edu.cn
Supported by:
Qingming Ma1, Jianhong Xu2
通讯作者:
Qingming Ma,E-mail:qma@qdu.edu.cn;Jianhong Xu,E-mail:xujianhong@tsinghua.edu.cn
基金资助:
Qingming Ma, Jianhong Xu. Green microfluidics in microchemical engineering for carbon neutrality[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 332-345.
Qingming Ma, Jianhong Xu. Green microfluidics in microchemical engineering for carbon neutrality[J]. 中国化学工程学报, 2023, 53(1): 332-345.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.01.014
[1] T. Tan, B. Chen, H. Zhang, Z. Cui, Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”, Chem. Ind. Eng. Prog. (China) 40 (3) (2021) 1137–1141. (in Chinese) [2] J. Chen, Carbon neutrality: toward a sustainable future, Innovation 2 (3) (2021) 100127. https://pubmed.ncbi.nlm.nih.gov/34557769/ [3] S. Jain, A. Agarwal, V. Jani, S. Singhal, P. Sharma, R. Jalan, Assessment of carbon neutrality and sustainability in educational campuses (CaNSEC): a general framework, Ecol. Indic. 76 (2017) 131–143. http://dx.doi.org/10.1016/j.ecolind.2017.01.012 [4] National Energy Administration of China, 13th Five-Year Plan for Energy Development, http://www.nea.gov.cn/135989417_14846217874961n.pdf (2020). (in Chinese) [5] J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and scaling up of microchemical systems: a review, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 285–305. https://doi.org/10.1146/annurev-chembioeng-060816-101443 [6] Y. Wang, K. Wang, G. Luo, J. Xu, Y. Lv, Advances in research of microstructured chemical process, Sci. Sin.-Chim 44 (9) (2014) 1404–1412. https://doi.org/10.1360/n032014-00158 [7] G. Chen, Y. Zhao, J. Yue, Z. Dong, H. Cao, Q. Yuan, Transport phenomena in micro-chemical engineering, J. Chem. Ind. Eng. (China) 64 (1) (2013) 63–75. (in Chinese) [8] G. Chen, Q. Yuan, Micro-chemical technology, J. Chem. Ind. Eng. (China) 54 (4) (2003) 427–439. [9] G. Luo, K. Wang, Y. Wang, Y. Lv, J. Xu, Principles and applications of micro-structured chemical system, Chem. Ind. Eng. Prog. (China) 30 (8) (2011) 1637–1642. (in Chinese) [10] W. Wang, Y. Su, Z. Liu, X. Ju, R. Xie, L. Chu, Controllable microfluidic fabrication of microscale functional materials, Chem. Ind. Eng. Prog. (China) 38 (1) (2019) 421–433. (in Chinese) [11] G.M. Whitesides, The origins and the future of microfluidics, Nature 442 (7101) (2006) 368–373. https://pubmed.ncbi.nlm.nih.gov/16871203/ [12] Q. Ma, J. Cao, Y. Gao, S. Han, Y. Liang, T. Zhang, X. Wang, Y. Sun, Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications, Nanoscale 12 (29) (2020) 15512–15527. https://doi.org/10.1039/d0nr02397c [13] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Microfluidic diagnostic technologies for global public health, Nature 442 (7101) (2006) 412–418. https://www.nature.com/articles/nature05064 [14] M. Guo, A. Rotem, J. Heyman, D. Weitz, Droplet microfluidics for high-throughput biological assays, Lab a Chip 12 (12) (2012) 2146–2155. https://doi.org/10.1039/c2lc21147e [15] Q. Ma, Y. Song, W. Sun, J. Cao, H. Yuan, X. Wang, Y. Sun, H. C. Shum, Cell-inspired all-aqueous microfluidics: from intracellular liquid–liquid phase separation toward advanced biomaterials, Adv. Sci. 7 (7) (2020) 1903359. https://doi.org/10.1002/advs.201903359 [16] N.C. Speller, G.G. Morbioli, M.E. Cato, T.P. Cantrell, E.M. Leydon, B.E. Schmidt, A.M. Stockton, Cutting edge microfluidics: xurography and a microwave, Sens. Actuat. B Chem. 291 (2019) 250–256. http://dx.doi.org/10.1016/j.snb.2019.04.004 [17] G.G. Morbioli, N.C. Speller, M.E. Cato, T.P. Cantrell, A.M. Stockton, Rapid and low-cost development of microfluidic devices using wax printing and microwave treatment, Sens. Actuat. B Chem. 284 (2019) 650–656. http://dx.doi.org/10.1016/j.snb.2018.12.053 [18] J.M. Sidorova, N. Li, D.C. Schwartz, A. Folch, R.J. Monnat Jr, Microfluidic-assisted analysis of replicating DNA molecules, Nat. Protoc. 4 (6) (2009) 849–861. https://www.nature.com/articles/nprot.2009.54 [19] D. Qin, Y. Xia, G.M. Whitesides, Soft lithography for micro- and nanoscale patterning, Nat. Protoc. 5 (3) (2010) 491–502. https://pubmed.ncbi.nlm.nih.gov/20203666/ [20] X. Hou, Y. Zhang, G.T.D. Santiago, M.M. Alvarez, J. Ribas, S.J. Jonas, P.S. Weiss, A.M. Andrews, J. Aizenberg, A. Khademhosseini, Interplay between materials and microfluidics, Nat. Rev. Mater. 2 (2017) 17016. https://www.nature.com/articles/natrevmats201716 [21] M. Schmidt, H. Hottenroth, M. Schottler, G. Fetzer, B. Schlüter, Life cycle assessment of silicon wafer processing for microelectronic chips and solar cells, Int. J. Life Cycle Assess. 17 (2) (2012) 126–144. http://dx.doi.org/10.1007/s11367-011-0351-1 [22] M.S. Branham, T.G. Gutowski, Deconstructing energy use in microelectronics manufacturing: an experimental case study of a MEMS fabrication facility, Environ. Sci. Technol. 44 (11) (2010) 4295–4301. https://pubmed.ncbi.nlm.nih.gov/20411980/ [23] E.D. Williams, R.U. Ayres, M. Heller, The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices, Environ. Sci. Technol. 36 (24) (2002) 5504–5510. http://dx.doi.org/10.1021/es025643o [24] A. Günther, K.F. Jensen, Multiphase microfluidics: from flow characteristics to chemical and materials synthesis, Lab Chip 6 (12) (2006) 1487–1503. https://pubmed.ncbi.nlm.nih.gov/17203152/ [25] Y. Song, A. Sauret, H.C. Shum, All-aqueous multiphase microfluidics, Biomicrofluidics 7 (6) (2013) 61301. https://pubmed.ncbi.nlm.nih.gov/24454609/ [26] O. Vidal, B. Goffé, N. Arndt, Metals for a low-carbon society, Nat. Geosci. 6 (11) (2013) 894–896. https://www.nature.com/articles/ngeo1993 [27] H. Nakajima, P. Dijkstra, K. Loos, The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed, Polymers (Basel) 9 (10) (2017) E523. https://pubmed.ncbi.nlm.nih.gov/30965822/ [28] A.T. Adeleye, C.K. Odoh, O.C. Enudi, O.O. Banjoko, O.O. Osiboye, E. Toluwalope Odediran, H. Louis, Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass, Process. Biochem. 96 (2020) 174–193. http://dx.doi.org/10.1016/j.procbio.2020.05.032 [29] A.J. Morgan, L.H.S. Jose, W.D. Jamieson, J.M. Wymant, B. Song, P. Stephens, D.A. Barrow, O.K. Castell, Simple and versatile 3D printed microfluidics using fused filament fabrication, PLoS One 11 (4) (2016) e0152023. https://pubmed.ncbi.nlm.nih.gov/27050661/ [30] K.R. King, C.C.J. Wang, M.R. Kaazempur-Mofrad, J.P. Vacanti, J.T. Borenstein, Biodegradable microfluidics, Adv. Mater. 16 (22) (2004) 2007–2012. https://doi.org/10.1002/adma.200306522 [31] C. J. Bettinger, E. J. Weinberg, K. M. Kulig, J. P. Vacanti, Y. Wang, J. T. Borenstein, R. Langer, Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer, Adv. Mater. 18 (2) (2006) 165–169. https://www.semanticscholar.org/paper/e527a437e5200c4b213f8c7e43c849eba11a4f5d [32] S.W. Zhao, Y. Chen, B.P. Partlow, A.S. Golding, P. Tseng, J. Coburn, M.B. Applegate, J.E. Moreau, F.G. Omenetto, D.L. Kaplan, Bio-functionalized silk hydrogel microfluidic systems, Biomaterials 93 (2016) 60–70. http://dx.doi.org/10.1016/j.biomaterials.2016.03.041 [33] A. Paguirigan, D.J. Beebe, Gelatin based microfluidic devices for cell culture, Lab Chip 6 (3) (2006) 407–413. https://pubmed.ncbi.nlm.nih.gov/16511624/ [34] M. Cabodi, N.W. Choi, J.P. Gleghorn, C.S.D. Lee, L.J. Bonassar, A.D. Stroock, A microfluidic biomaterial, J. Am. Chem. Soc. 127 (40) (2005) 13788–13789. https://doi.org/10.1021/ja054820t [35] J. Luecha, A. Hsiao, S. Brodsky, G. L. Liu, J. L. Kokini, Green microfluidic devices made of corn proteins, Lab Chip 11 (20) (2011) 3419–3425. https://pubmed.ncbi.nlm.nih.gov/21918783/ [36] J.J. Park, X.L. Luo, H. Yi, T.M. Valentine, G.F. Payne, W.E. Bentley, R. Ghodssi, G.W. Rubloff, Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices, Lab a Chip 6 (10) (2006) 1315. https://doi.org/10.1039/b603101c [37] Y.B. Ling, J. Rubin, Y.T. Deng, C. Huang, U. Demirci, J.M. Karp, A. Khademhosseini, A cell-laden microfluidic hydrogel, Lab a Chip 7 (6) (2007) 756. [38] R. Lausecker, V. Badilita, U. Gleißner, U. Wallrabe, Introducing natural thermoplastic shellac to microfluidics: a green fabrication method for point-of-care devices, Biomicrofluidics 10 (4) (2016) 044101. https://pubmed.ncbi.nlm.nih.gov/27478525/ [39] J.K. Zhu, C. Wang, Biodegradable plastics: green hope or greenwashing? Mar Pollut Bull 161 (Pt B) (2020) 111774. https://pubmed.ncbi.nlm.nih.gov/33122148/ [40] O.J. Schmitz, P.A. Raymond, J.A. Estes, W.A. Kurz, G.W. Holtgrieve, M.E. Ritchie, D.E. Schindler, A.C. Spivak, R.W. Wilson, M.A. Bradford, V. Christensen, L. Deegan, V. Smetacek, M.J. Vanni, C.C. Wilmers, Animating the carbon cycle, Ecosystems 17 (2) (2014) 344–359. https://doi.org/10.1007/s10021-013-9715-7 [41] A.M.D. Wan, D. Devadas, E.W.K. Young, Recycled polymethylmethacrylate (PMMA) microfluidic devices, Sens. Actuat. B Chem. 253 (2017) 738–744. http://dx.doi.org/10.1016/j.snb.2017.07.011 [42] A.M. Tothill, M. Partridge, S.W. James, R.P. Tatam, Fabrication and optimisation of a fused filament 3D-printed microfluidic platform, J. Micromechanics Microengineering 27 (3) (2017) 035018. http://dx.doi.org/10.1088/1361-6439/aa5ae3 [43] P. Domachuk, K. Tsioris, F. G. Omenetto, D. L. Kaplan, Bio-microfluidics: Biomaterials and Biomimetic Designs, Adv. Mater. 22 (2) (2010) 249–260. https://doi.org/10.1039/b615486g [44] S.Y. Choi, S.J. Park, W.J. Kim, J.E. Yang, H. Lee, J. Shin, S.Y. Lee, One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in escherichia coli, Nat. Biotechnol. 34 (4) (2016) 435–440. https://pubmed.ncbi.nlm.nih.gov/26950748/ [45] M. Irimia-Vladu, E. D. Głowacki, G. Schwabegger, L. Leonat, H. Z. Akpinar, H. Sitter, S. Bauer, N. S. Sariciftci, Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors, Green Chem. 15 (6) (2013) 1473–1476. [46] Q. Ma, Y. Song, G. Baier, C. Holtze, H.C. Shum, Osmo-solidification of all-aqueous emulsion with enhanced preservation of protein activity, J. Mater. Chem. B 4 (7) (2016) 1213–1218. https://doi.org/10.1039/c5tb02187a [47] D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem. 70 (23) (1998) 4974–4984. https://doi.org/10.1021/ac980656z [48] M.S. Thomas, B. Millare, J.M. Clift, D.D. Bao, C. Hong, V.I. Vullev, Print-and-peel fabrication for microfluidics: what's in it for biomedical applications? Ann. Biomed. Eng. 38 (1) (2010) 21–32. http://dx.doi.org/10.1007/s10439-009-9831-x [49] G.V. Kaigala, S. Ho, R. Penterman, C.J. Backhouse, Rapid prototyping of microfluidic devices with a wax printer, Lab a Chip 7 (3) (2007) 384. https://doi.org/10.1039/b617764f [50] V.I. Vullev, J.D. Wan, V. Heinrich, P. Landsman, P.E. Bower, B. Xia, B. Millare, G. Jones 2nd, Nonlithographic fabrication of microfluidic devices, J. Am. Chem. Soc. 128 (50) (2006) 16062–16072. https://pubmed.ncbi.nlm.nih.gov/17165759/ [51] V. Saggiomo, A.H. Velders, Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices, Adv Sci (Weinh) 2 (9) (2015) 1500125. https://pubmed.ncbi.nlm.nih.gov/27709002/ [52] N.C. Speller, G.G. Morbioli, M.E. Cato, Z.A. Duca, A.M. Stockton, Green, low-cost, user-friendly, and elastomeric (GLUE) microfluidics, ACS Appl. Polym. Mater. 2 (3) (2020) 1345–1355. https://doi.org/10.1021/acsapm.9b01201 [53] A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology, Angew. Chem. Int. Ed Engl. 49 (34) (2010) 5846–5868. https://pubmed.ncbi.nlm.nih.gov/20572214/ [54] T. Kong, J. Wu, K.W. Yeung, M.K. To, H.C. Shum, L. Wang, Microfluidic fabrication of polymeric core-shell microspheres for controlled release applications, Biomicrofluidics 7 (4) (2013) 44128. https://pubmed.ncbi.nlm.nih.gov/24404061/ [55] X.B. Ji, S. Guo, C.F. Zeng, C.Q. Wang, L.X. Zhang, Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device, RSC Adv. 5 (4) (2015) 2517–2522. https://doi.org/10.1039/c4ra10389k [56] S. Park, P.A.L. Wijethunga, H. Moon, B. Han, On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device, Lab a Chip 11 (13) (2011) 2212. https://doi.org/10.1039/c1lc20111e [57] M. Toiya, V. Vanag, I. Epstein, Diffusively coupled chemical oscillators in a microfluidic assembly, Angew. Chem. 120 (40) (2008) 7867–7869. https://doi.org/10.1002/ange.200802339 [58] N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T.S. Peat, R. Surjadi, C. Easton, P.W. Leech, B.A. Sexton, A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract, Lab a Chip 9 (23) (2009) 3391. https://doi.org/10.1039/b911581a [59] Z. Liu, S.T. Chan, H.A. Faizi, R.C. Roberts, H.C. Shum, Droplet-based electro-coalescence for probing threshold disjoining pressure, Lab Chip 15 (9) (2015) 2018–2024. https://pubmed.ncbi.nlm.nih.gov/25771963/ [60] D.M.A. Buzza, P.D.I. Fletcher, T.K. Georgiou, N. Ghasdian, Water-in-water emulsions based on incompatible polymers and stabilized by triblock copolymers–templated polymersomes, Langmuir 29 (48) (2013) 14804–14814. https://doi.org/10.1021/la403356j [61] A.G. Teixeira, R. Agarwal, K.R. Ko, J. Grant-Burt, B.M. Leung, J.P. Frampton, Emerging biotechnology applications of aqueous two-phase systems, Adv. Healthc. Mater. 7 (6) (2018) e1701036. https://pubmed.ncbi.nlm.nih.gov/29280350/ [62] H. C. Shum, J. Varnell, D. Weitz, Microfluidic fabrication of water-in-water (w/w) jets and emulsions, Biomicrofluidics 6 (1) (2012) 12808–128089. https://pubmed.ncbi.nlm.nih.gov/22662075/ [63] B.U. Moon, N. Abbasi, S. G. Jones, D. K. Hwang, S. S. H. Tsai, Water-in-water droplets by passive microfluidic flow focusing, Anal. Chem. 88 (7) (2016) 3982–3989. https://doi.org/10.1021/acs.analchem.6b00225 [64] Å. Gustafsson, H. Wennerström, F. Tjerneld, The nature of phase separation in aqueous two-polymer systems, Polymer 27 (11) (1986) 1768–1770. [65] J. Esquena, Water-in-water (W/W) emulsions, Curr. Opin. Colloid Interface Sci. 25 (2016) 109–119. http://dx.doi.org/10.1016/j.cocis.2016.09.010 [66] A. Sauret, H. Cheung Shum, Forced generation of simple and double emulsions in all-aqueous systems, Appl. Phys. Lett. 100 (15) (2012) 154106. http://dx.doi.org/10.1063/1.3702434 [67] Z. Li, S.Y. Mak, A. Sauret, H.C. Shum, Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy, Lab a Chip 14 (4) (2014) 744. https://doi.org/10.1039/c3lc51176f [68] Y. Chao, H.C. Shum, Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications, Chem. Soc. Rev. 49 (1) (2020) 114–142. https://pubmed.ncbi.nlm.nih.gov/31750468/ [69] M. Iqbal, Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M.A. Shabbir, H.I. Hussain, S. Ahmed, Z. Yuan, Aqueous two-phase system (ATPS): an overview and advances in its applications, Biol. Proced. Online 18 (2016) 18. https://pubmed.ncbi.nlm.nih.gov/27807400/ [70] I. Ziemecka, V. van Steijn, G.J. Koper, M. Rosso, A.M. Brizard, J.H. van Esch, M.T. Kreutzer, Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems, Lab Chip 11 (4) (2011) 620–624. https://pubmed.ncbi.nlm.nih.gov/21125099/ [71] Y. Song, Y. K. Chan, Q. Ma, Z. Liu, H. C. Shum, All-aqueous electrosprayed emulsion for templated fabrication of cytocompatible microcapsules, ACS Appl. Mater. Interfaces 7 (25) (2015) 13925–13933. https://doi.org/10.1021/acsami.5b02708 [72] D. F. C. Silva, A. M. Azevedo, P. Fernandes, V. Chu, J. P. Conde, M. R. Aires-Barros, Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy, J. Chromatogr. A 1487 (2017) 242–247. http://dx.doi.org/10.1016/j.chroma.2016.12.036 [73] Y. Huang, T. Meng, T. Guo, W. Li, W. Yan, X. Li, S. Wang, Z. Tong, Aqueous two-phase extraction for bovine serum albumin (BSA) with co-laminar flow in a simple coaxial capillary microfluidic device, Microfluid. Nanofluidics 16 (3) (2014) 483–491. http://dx.doi.org/10.1007/s10404-013-1245-2 [74] D. F. C. Silva, A. M. Azevedo, P. Fernandes, V. Chu, J. P. Conde, M. R. Aires-Barros, Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system, J. Chromatogr. A 1249 (2012) 1–7. http://dx.doi.org/10.1016/j.chroma.2012.05.089 [75] E. Bras, R. Soares, A. M. Azevedo, P. Fernandes, M. Arévalo-Rodríguez, V. Chu, J. P. Conde, M. R. Aires-Barros, A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems, J. Chromatogr. A 1515 (2017) 252–259. https://pubmed.ncbi.nlm.nih.gov/28807549/ [76] T. Hahn, G. Münchow, S. Hardt, Electrophoretic transport of biomolecules across liquid-liquid interfaces, J. Phys. Condens. Matter 23 (18) (2011) 184107. https://pubmed.ncbi.nlm.nih.gov/21508474/ [77] R. J. Meagher, Y. K. Light, A. K. Singh, Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags, Lab Chip 8 (4) (2008) 527–532. https://pubmed.ncbi.nlm.nih.gov/18369506/ [78] U. Novak, M. Lakner, I. Plazl, P. Žnidaršič-Plazl, Experimental studies and modeling of α-amylase aqueous two-phase extraction within a microfluidic device, Microfluid. Nanofluidics 19 (1) (2015) 75–83. http://dx.doi.org/10.1007/s10404-015-1550-z [79] G. Münchow, F. Schönfeld, S. Hardt, K. Graf, Protein diffusion across the interface in aqueous two-phase systems, Langmuir 24 (16) (2008) 8547–8553. https://doi.org/10.1021/la800956j [80] Y. S. Huh, C. M. Jeong, H. N. Chang, S. Y. Lee, W. H. Hong, T. J. Park, Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device, Biomicrofluidics 4 (1) (2010) 14103. https://pubmed.ncbi.nlm.nih.gov/20644672/ [81] R. R. G. Soares, P. Novo, A. M. Azevedo, P. Fernandes, M. R. Aires-Barros, V. Chu, J. P. Conde, On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay, Lab Chip 14 (21) (2014) 4284–4294. [82] S. Meng, L. Xue, C. Xie, R. Bai, X. Yang, Z. Qiu, T. Guo, Y. Wang, T. Meng, Enhanced enzymatic reaction by aqueous two-phase systems using parallel-laminar flow in a double Y-branched microfluidic device, Chem. Eng. J. 335 (2018) 392–400. http://dx.doi.org/10.1016/j.cej.2017.10.085 [83] T. Thorsen, S. J. Maerkl, S. R. Quake, Microfluidic large-scale integration, Science 298 (5593) (2002) 580–584. https://pubmed.ncbi.nlm.nih.gov/12351675/ [84] I. E. Araci, P. Brisk, Recent developments in microfluidic large scale integration, Curr. Opin. Biotechnol. 25 (2014) 60–68. https://pubmed.ncbi.nlm.nih.gov/24484882/https://pubmed.ncbi.nlm.nih.gov/25228473/ [85] S. L. Schreiber, J. D. Kotz, M. Li, J. Aubé, C.P. Austin, J. C. Reed, H. Rosen, E. L. White, L. A. Sklar, C. W. Lindsley, B. R. Alexander, J. A. Bittker, P. A. Clemons, A. de Souza, M. A. Foley, M. Palmer, A. F. Shamji, M. J. Wawer, Y. Yao, Advancing biological understanding and therapeutics discovery with small-molecule probes, Cell 161 (6) (2015) 1252–1265. http://dx.doi.org/10.1016/j.cell.2015.05.023 [86] D. G. Brown, J. Boström, Where do recent small molecule clinical development candidates come from? J. Med. Chem. 61 (21) (2018) 9442–9468. https://doi.org/10.1021/acs.jmedchem.8b00675 [87] L. Chin, J. N. Andersen, P. A. Futreal, Cancer genomics: from discovery science to personalized medicine, Nat. Med. 17 (3) (2011) 297–303. https://doi.org/10.1038/nm.2323 [88] P. Neužil, S. Giselbrecht, K. Länge, T. J. Huang, A. Manz, Revisiting lab-on-a-chip technology for drug discovery, Nat. Rev. Drug Discov. 11 (8) (2012) 620–632. https://doi.org/10.1038/nrd3799 [89] E. Michelini, L. Cevenini, L. Mezzanotte, A. Coppa, A. Roda, Cell-based assays: Fuelling drug discovery, Anal. Bioanal. Chem. 398 (1) (2010) 227–38. http://dx.doi.org/10.1007/s00216-010-3933-z [90] E. M. Payne, D. A. Holland-Moritz, S. W. Sun, R. T. Kennedy, High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects, Lab a Chip 20 (13) (2020) 2247–2262. https://doi.org/10.1039/d0lc00347f [91] M. Sesen, T. Alan, A. Neild, Droplet control technologies for microfluidic high throughput screening (μHTS), Lab Chip 17 (14) (2017) 2372–2394. https://pubmed.ncbi.nlm.nih.gov/28631799/ [92] Z. Q. Tong, A. Ivask, K. Y. Guo, S. McCormick, E. Lombi, C. Priest, N. H. Voelcker, Crossed flow microfluidics for high throughput screening of bioactive chemical-cell interactions, Lab Chip 17 (3) (2017) 501–510. https://pubmed.ncbi.nlm.nih.gov/28074962/ [93] D. Midkiff, A. San-Miguel, Microfluidic technologies for high throughput screening through sorting and on-chip culture of C. elegans, Molecules 24 (23) (2019) E4292. https://pubmed.ncbi.nlm.nih.gov/31775328/ [94] M. Wiendahl, S. A. Oelmeier, F. Dismer, J. Hubbuch, High-throughput screening-based selection and scale-up of aqueous two-phase systems for pDNA purification, J Sep Sci 35 (22) (2012) 3197–3207. https://pubmed.ncbi.nlm.nih.gov/22888101/ [95] G. Du, Q. Fang, J. M. den Toonder, Microfluidics for cell-based high throughput screening platforms - A review, Anal. Chim. Acta 903 (2016) 36–50. https://pubmed.ncbi.nlm.nih.gov/26709297/ [96] S. A. Oelmeier, C. Ladd Effio, J. Hubbuch, High throughput screening based selection of phases for aqueous two-phase system-centrifugal partitioning chromatography of monoclonal antibodies, J. Chromatogr. A 1252 (2012) 104–114. http://dx.doi.org/10.1016/j.chroma.2012.06.075 [97] M. Bensch, B. Selbach, J. Hubbuch, High throughput screening techniques in downstream processing: Preparation, characterization and optimization of aqueous two-phase systems, Chem. Eng. Sci. 62 (7) (2007) 2011–2021. http://dx.doi.org/10.1016/j.ces.2006.12.053 [98] V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, A. S. Basu, A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening, Lab a Chip 10 (18) (2010) 2433. https://doi.org/10.1039/c004768f [99] E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, M. L. Samuels, Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci. USA 106 (34) (2009) 14195–14200. https://pubmed.ncbi.nlm.nih.gov/19617544/ [100] M. H. Wu, S. B. Huang, G. B. Lee, Microfluidic cell culture systems for drug research, Lab a Chip 10 (8) (2010) 939. https://doi.org/10.1039/b921695b [101] J. El-Ali, P. K. Sorger, K. F. Jensen, Cells on chips, Nature 442 (7101) (2006) 403–411. https://www.nature.com/articles/nature05063 [102] T. H. Park, M. L. Shuler, Integration of cell culture and microfabrication technology, Biotechnol. Prog. 19 (2) (2003) 243–253. https://pubmed.ncbi.nlm.nih.gov/12675556/ [103] J. Melin, S. R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation, Annu. Rev. Biophys. Biomol. Struct. 36 (2007) 213–231. https://doi.org/10.1146/annurev.biophys.36.040306.132646 [104] D. J. Beebe, G. A. Mensing, G. M. Walker, Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4 (2002) 261–286. https://pubmed.ncbi.nlm.nih.gov/12117759/ [105] R. N. Zare, S. Kim, Microfluidic platforms for single-cell analysis, Annu. Rev. Biomed. Eng. 12 (2010) 187–201. https://doi.org/10.1146/annurev-bioeng-070909-105238 [106] R. Gómez-Sjöberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, S. R. Quake, Versatile, fully automated, microfluidic cell culture system, Anal. Chem. 79 (22) (2007) 8557–8563. https://pubmed.ncbi.nlm.nih.gov/17953452/ [107] A. I. Olives, V. González-Ruiz, M. A. Martín, Sustainable and eco-friendly alternatives for liquid chromatographic analysis, ACS Sustain. Chem. Eng. 5 (7) (2017) 5618–5634. http://dx.doi.org/10.1021/acssuschemeng.7b01012 [108] J. Płotka, M. Tobiszewski, A. M. Sulej, M. Kupska, J. Namieśnik, Green chromatography, J. Chromatogr. A 1307 (2013) 1–20. https://pubmed.ncbi.nlm.nih.gov/23932374/ [109] S. Armenta, M. de la Guardia, Green chromatography for the analysis of foods of animal origin, Trac Trends Anal. Chem. 80 (2016) 517–530. http://dx.doi.org/10.1016/j.trac.2015.06.012 [110] S. Jakiela, T. S. Kaminski, O. Cybulski, D. B.Weibel, P. Garstecki, Rücktitelbild: Bacterial Growth and Adaptation in Microdroplet Chemostats, Angew. Chem., Int. Ed. 52 (34) (2013) 8908–8911. [111] D. Agustini, L. Fedalto, M. F. Bergamini, L. H. Marcolino-Junior, Microfluidic thread based electroanalytical system for green chromatographic separations, Lab a Chip 18 (4) (2018) 670-678. [112] A. W. Martinez, S. T. Phillips, G. M. Whitesides, Three-dimensional microfluidic devices fabricated in layered paper and tape, Proc. Natl. Acad. Sci. USA 105 (50) (2008) 19606–19611. https://pubmed.ncbi.nlm.nih.gov/19064929/ [113] A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angew. Chem. Int. Ed Engl. 46 (8) (2007) 1318–1320. https://pubmed.ncbi.nlm.nih.gov/17211899/ [114] A. K. Yetisen, M. S. Akram, C. R. Lowe, Paper-based microfluidic point-of-care diagnostic devices, Lab a Chip 13 (12) (2013) 2210–2251. https://pubmed.ncbi.nlm.nih.gov/23652632/ [115] A. W. Martinez, S. T. Phillips, G. M. Whitesides, E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices, Anal. Chem. 82 (1) (2010) 3–10. https://pubmed.ncbi.nlm.nih.gov/20000334/ [116] K. S. Elvira, X. C. I. Solvas, R. C. R. Wootton, A. J. DeMello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5 (11) (2013) 905–915. https://pubmed.ncbi.nlm.nih.gov/24153367/ [117] L. Clime, J. Daoud, D. Brassard, L. Malic, M. Geissler, T. Veres, Active pumping and control of flows in centrifugal microfluidics, Microfluid. Nanofluidics 23 (3) (2019) 1–22. http://dx.doi.org/10.1007/s10404-019-2198-x [118] Y. H. Yap, A. A. Azmi, N. K. Mohd, F. S. J. Yong, S. Y. Kan, M. Z. A. Thirmizir, P. W. Chia, Green synthesis of silver nanoparticle using water extract of onion peel and application in the acetylation reaction, Arab. J. Sci. Eng. 45 (6) (2020) 4797–4807. http://dx.doi.org/10.1007/s13369-020-04595-3 [119] H. S. T. S. H. Abdullah, S. N. A. R. M. Asseri, W. N. K. W. Mohamad, S. Y. Kan, A. A. Azmi, F. S. Y. Julius, P. W. Chia, Green synthesis, characterization and applications of silver nanoparticle mediated by the aqueous extract of red onion peel, Environ. Pollut. 271 (2) (2021) 116295. [120] D. J. Magdalene, D. Muthuselvam, T. Pravinraj, Microfluidics-based green synthesis of silver nanoparticle from the aqueous leaf extract of Ipomea quamoclit L, Appl. Nanosci. 11 (7) (2021) 2073–2084. http://dx.doi.org/10.1007/s13204-021-01899-0 [121] S. H. Ma, J. Thiele, X. Liu, Y. P. Bai, C. Abell, W.T.S. Huck, Fabrication of microgel particles with complex shape via selective polymerization of aqueous two-phase systems, Small 8 (15) (2012) 2356–2360. https://doi.org/10.1002/smll.201102715 [122] U. Shimanovich, Y. Song, J. Brujic, H. C. Shum, T. P. Knowles, Multiphase protein microgels, Macromol. Biosci. 15 (4) (2015) 501–508. https://pubmed.ncbi.nlm.nih.gov/25407891/ [123] Y. Song, U. Shimanovich, T. C. Michaels, Q. Ma, J. Li, T. P. Knowles, H. C. Shum, Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces, Nat. Commun. 7 (2016) 12934. https://pubmed.ncbi.nlm.nih.gov/27725629/ [124] D. C. Dewey, C. A. Strulson, D. N. Cacace, P. C. Bevilacqua, C. D. Keating, Bioreactor droplets from liposome-stabilized all-aqueous emulsions, Nat. Commun. 5 (2014) 4670. https://pubmed.ncbi.nlm.nih.gov/25140538/ [125] Y. L. Zhang, F. Wu, W. E. Yuan, T. Jin, Polymersomes of asymmetric bilayer membrane formed by phase-guided assembly, J. Control. Release 147 (3) (2010) 413–419. http://dx.doi.org/10.1016/j.jconrel.2010.07.121 [126] X. F. Zhang, Z. G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches, Int. J. Mol. Sci. 17 (9) (2016) 1534. https://doi.org/10.3390/ijms17091534 [127] H. Yuan, Q. Ma, Y. Song, Y. H. Tang, Y. K. Chan, H. C. Shum, Phase-separation-induced formation of Janus droplets based on aqueous two-phase systems, Macromol. Chem. Phys. 218 (2) (2017) 1600422. https://doi.org/10.1002/macp.201600422 [128] Y. Song, T. Michaels, Q. Ma, Z. Liu, H. Yuan, S. Takayama, T. Knowles, H. C. Shum, Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils, Nat. Commun. 9 (1) (2018) 2110. https://pubmed.ncbi.nlm.nih.gov/29844310/ [129] D. N. Cacace, A. T. Rowland, J. J. Stapleton, D. C. Dewey, C. D. Keating, Aqueous emulsion droplets stabilized by lipid vesicles as microcompartments for biomimetic mineralization, Langmuir 31 (41) (2015) 11329–11338. http://dx.doi.org/10.1021/acs.langmuir.5b02754 [130] N. N. Deng, W. T. S. Huck, Microfluidic formation of monodisperse coacervate organelles in liposomes, Angew. Chem. Int. Ed Engl. 56 (33) (2017) 9736–9740. https://pubmed.ncbi.nlm.nih.gov/28658517/ [131] Z. J. Meng, W. Wang, R. Xie, X.J. Ju, Z. Liu, L. Y. Chu, Microfluidic generation of hollow Ca-alginate microfibers, Lab a Chip 16 (14) (2016) 2673–2681. https://doi.org/10.1039/c6lc00640j [132] Y. Cheng, F. Y. Zheng, J. Lu, L. R. Shang, Z. Y. Xie, Y. J. Zhao, Y. P. Chen, Z. Z. Gu, Bioinspired multicompartmental microfibers from microfluidics, Adv. Mater. 26 (30) (2014) 5184–5190. https://pubmed.ncbi.nlm.nih.gov/24934291/ [133] D. Lim, E. Lee, H. Kim, S. Park, S. Baek, J. Yoon, Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices, Soft Matter 11 (8) (2015) 1606–1613. https://pubmed.ncbi.nlm.nih.gov/25594916/ [134] R. X. Xie, P. D. Xu, Y. P. Liu, L. L. Li, G. A. Luo, M. Y. Ding, Q. L. Liang, Necklace-like microfibers with variable knots and perfusable channels fabricated by an oil-free microfluidic spinning process, Adv. Mater. 30 (14) (2018) 1705082. https://doi.org/10.1002/adma.201705082 [135] S. Mytnyk, A. G. L. Olive, F. Versluis, J. M. Poolman, E. Mendes, R. Eelkema, J. H. Van?Esch, Compartmentalizing supramolecular hydrogels using aqueous multi-phase systems, Angew. Chem. 129 (47) (2017) 15119–15123. https://doi.org/10.1002/ange.201706272 [136] M. Al-Wabel, J. Elfaki, A. Usman, Q. Hussain, Y. S. Ok, Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture, Environ. Res. 174 (2019) 69–79. https://pubmed.ncbi.nlm.nih.gov/31054524/ [137] J. B. Gao, Y. D. Liu, Y. Hoshino, G. Inoue, Amine-containing nanogel particles supported on porous carriers for enhanced carbon dioxide capture, Appl. Energy 253 (2019) 113567. http://dx.doi.org/10.1016/j.apenergy.2019.113567 [138] Y. Zhou, J. Huang, Z. Chen, Y. Wang, J. Xu, Controlled retention of droplets and the enhancement of mass transfer in microchannel with multi-groove structure, Chem. Eng. Sci. 209 (2019) 115223. http://dx.doi.org/10.1016/j.ces.2019.115223 [139] J. Huang, F. Sang, G. Luo, J. Xu, Continuous synthesis of Gabapentin with a microreaction system, Chem. Eng. Sci. 173 (2017) 507–513. http://dx.doi.org/10.1016/j.ces.2017.08.020 |
[1] | Yanli Zhang, Zhengkun Hou, Dong Yao, Xiaomin Qiu, Hongru Zhang, Peizhe Cui, Yinglong Wang, Jun Gao, Zhaoyou Zhu, Limei Zhong. Energy, exergy, economic and environmental comprehensive analysis and multi-objective optimization of a sustainable zero liquid discharge integrated process for fixed-bed coal gasification wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 341-354. |
[2] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[3] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 151-161. |
[4] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308. |
[5] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103. |
[6] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[7] | Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10. |
[8] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[9] | Vesna Krsti?. Theoretical and experimental assessment of a novel method to establish the complete measurement range of the calorimeter and its limit of detection and quantification [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 466-473. |
[10] | Xiaoqing Yan, Hua An, Zihao Chen, Guidong Yang. Significantly enhanced charge transfer efficiency and surface reaction on NiP2/g-C3N4 heterojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 31-39. |
[11] | Suisui Zhang, Jingying Li, Yan Nie, Luyao Qiang, Boyang Bai, Zhiwei Peng, Xiaoxun Ma. Life cycle assessment of HFC-134a production by calcium carbide acetylene route in China [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 236-244. |
[12] | Fang Yang, Wei Zhao, Guiren Wang. Electrokinetic mixing of two fluids with equivalent conductivity [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 256-260. |
[13] | Ruoshi Qin, Jinsong Zhao. Adaptive multiscale convolutional neural network model for chemical process fault diagnosis [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 398-411. |
[14] | Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo. Reaction kinetics determination based on microfluidic technology [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 49-72. |
[15] | Yuyang Kang, Yiqing Luo, Xigang Yuan. Recent progress on equation-oriented optimization of complex chemical processes [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 162-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||