[1] S.W. Xiong, L. Zhou, Y.Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. 56 (2023) 1-14. [2] J.J. Luo, Z.H. Jin, H.P. Jin, Q. Li, X. Ji, Y.Y. Dai, Causal temporal graph attention network for fault diagnosis of chemical processes, Chin. J. Chem. Eng. 70 (2024) 20-32. [3] C.T. Wang, H.B. Shi, B. Song, Y. Tao, Hierarchical multihead self-attention for time-series-based fault diagnosis, Chin. J. Chem. Eng. 70 (2024) 104-117. [4] C.B. Low, D.W. Wang, S. Arogeti, J.B. Zhang, Causality assignment and model approximation for hybrid bond graph: fault diagnosis perspectives, IEEE Trans. Autom. Sci. Eng. 7 (3) (2010) 570-580. [5] L.U. Iurinic, A.R. Herrera-Orozco, R.G. Ferraz, A.S. Bretas, Distribution systems high-impedance fault location: a parameter estimation approach, IEEE Trans. Power Deliv. 31 (4) (2016) 1806-1814. [6] A. Izadian, P. Khayyer, Application of Kalman filters in model-based fault diagnosis of a DC-DC boost converter, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society. November 7-10, 2010, Glendale, AZ, USA. IEEE, (2010) 369-372. [7] A. Ben Youssef, S.K. El Khil, I. Slama-Belkhodja, State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction, IEEE Trans. Power Electron. 28 (12) (2013) 5842-5853. [8] S. Byun, M. Papaelias, F.P.G. Marquez, D. Lee, Fault-tree-analysis-based health monitoring for autonomous underwater vehicle, J. Mar. Sci. Eng. 10 (12) (2022) 1855. [9] Y. Wilhelm, P. Reimann, W. Gauchel, B. Mitschang, Overview on hybrid approaches to fault detection and diagnosis: Combining data-driven, physics-based and knowledge-based models, Procedia CIRP 99 (2021) 278-283. [10] Application of the Digraph Method in System Fault Diagnostics. [11] M. Misra, H.H. Yue, S.J. Qin, C. Ling, Multivariate process monitoring and fault diagnosis by multi-scale PCA, Comput. Chem. Eng. 26 (9) (2002) 1281-1293. [12] G. Li, S.Z. Qin, Y.D. Ji, D.H. Zhou, Total PLS based contribution plots for fault diagnosis, Acta Autom. Sin. 35 (6) (2009) 759-765. [13] Q.C. Jiang, X.F. Yan, J. Li, PCA-ICA integrated with Bayesian method for non-Gaussian fault diagnosis, Ind. Eng. Chem. Res. 55 (17) (2016) 4979-4986. [14] S.W. Choi, C. Lee, J.M. Lee, J.H. Park, I.B. Lee, Fault detection and identification of nonlinear processes based on kernel PCA, Chemom. Intell. Lab. Syst. 75 (1) (2005) 55-67. [15] J.M. Lee, S. Joe Qin, I.B. Lee, Fault detection of non-linear processes using kernel independent component analysis, Can. J. Chem. Eng. 85 (4) (2007) 526-536. [16] S. Yin, X.P. Zhu, O. Kaynak, Improved PLS focused on key-performance-indicator-related fault diagnosis, IEEE Trans. Ind. Electron. 62 (3) (2015) 1651-1658. [17] K. Zhong, M. Han, T. Qiu, B. Han, Fault diagnosis of complex processes using sparse kernel local fisher discriminant analysis, IEEE Trans. Neural Netw. Learn. Syst. 31 (5) (2020) 1581-1591. [18] A. Hajnayeb, A. Ghasemloonia, S.E. Khadem, M.H. Moradi, Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis, Expert Syst. Appl. 38 (8) (2011) 10205-10209. [19] R.V. Sanchez, P. Lucero, R.E. Vasquez, M. Cerrada, J.C. Macancela, D. Cabrera, Feature ranking for multi-fault diagnosis of rotating machinery by using random forest and KNN, J. Intell. Fuzzy Syst. 34 (6) (2018) 3463-3473. [20] N. Saravanan, V.N.S.K. Siddabattuni, K.I. Ramachandran, Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM), Appl. Soft Comput. 10 (1) (2010) 344-360. [21] Y.T. Dong, H.K. Jiang, Z.H. Wu, Q. Yang, Y.P. Liu, Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis, Reliab. Eng. Syst. Saf. 235 (2023) 109253. [22] M.Z. Mu, H.K. Jiang, X. Wang, Y.T. Dong, A task-oriented theil index-based meta-learning network with gradient calibration strategy for rotating machinery fault diagnosis with limited samples, Adv. Eng. Inform. 62 (2024) 102870. [23] X. Wang, H.K. Jiang, M.Z. Mu, Y.T. Dong, A dynamic collaborative adversarial domain adaptation network for unsupervised rotating machinery fault diagnosis, Reliab. Eng. Syst. Saf. 255 (2025) 110662. [24] S.S. Zhong, S. Fu, L. Lin, A novel gas turbine fault diagnosis method based on transfer learning with CNN, Measurement 137 (2019) 435-453. [25] B. Zhao, X.M. Zhang, H. Li, Z.B. Yang, Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions, Knowl. Based Syst. 199 (2020) 105971. [26] W. Zhang, G.L. Peng, C.H. Li, Y.H. Chen, Z.J. Zhang, A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals, Sensors 17 (2) (2017) 425. [27] H.T. Zhao, S.Y. Sun, B. Jin, Sequential fault diagnosis based on LSTM neural network, IEEE Access 6 (2018) 12929-12939. [28] C. Zhang, Q.X. Zhu, Y.L. He, Y. Zhang, M.Q. Zhang, Y. Xu, Deep graph convolutional neural network for fault diagnosis of complex industrial processes, 2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR). December 8-10, 2023, Tianjin, China. IEEE, (2023) 581-585. [29] K. Zhou, E. Diehl, J. Tang, Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations, Mech. Syst. Signal Process. 185 (2023) 109772. [30] G. San Martin, E.L. Droguett, Temporal variational auto-encoders for semi-supervised remaining useful life and fault diagnosis, IEEE Access 10 (2022) 55112-55125. [31] Z.H. Wang, T. Sun, X.C. Tian, Fault Diagnosis of Rolling Bearing Based on SDAE and PSO-DBN In: 2019 Chinese Control and Decision Conference (CCDC). Nanchang, China. IEEE, 2019. [32] W. Deng, H.L. Liu, J.J. Xu, H.M. Zhao, Y.J. Song, An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE Trans. Instrum. Meas. 69 (10) (2020) 7319-7327. [33] Z.Y. Chen, W.H. Li, Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network, IEEE Trans. Instrum. Meas. 66 (7) (2017) 1693-1702. [34] H. Oh, J.H. Jung, B.C. Jeon, B.D. Youn, Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis, IEEE Trans. Ind. Electron. 65 (4) (2018) 3539-3549. [35] J.H. Yan, Y.Y. Hu, C.Z. Guo, Rotor unbalance fault diagnosis using DBN based on multi-source heterogeneous information fusion, Procedia Manuf. 35 (2019) 1184-1189. [36] G.X. Niu, X. Wang, M. Golda, S. Mastro, B. Zhang, An optimized adaptive PReLU-DBN for rolling element bearing fault diagnosis, Neurocomputing 445 (2021) 26-34. [37] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, R. Hadsell, Overcoming catastrophic forgetting in neural networks, Proc. Natl. Acad. Sci. USA 114 (13) (2017) 3521-3526. [38] G. Birol, U. Cenk, C. Ali, A modular simulation package for fed-batch fermentation: penicillin production, Comput. Chem. Eng. 26 (11) (2002) 1553-1565. [39] Z.X. Song, J. Li, Variable selection with false discovery rate control in deep neural networks, Nat. Mach. Intell. 3 (2021) 426-433. [40] Y.L. Wang, Z.F. Pan, X.F. Yuan, C.H. Yang, W.H. Gui, A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network, ISA Trans. 96 (2020) 457-467. |