[1] M. Antar, D.M. Lyu, M. Nazari, A. Shah, X.M. Zhou, D.L. Smith, Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization, Renew. Sustain. Energy Rev. 139 (2021) 110691. [2] J.G.B. Churchill, V.B. Borugadda, A.K. Dalai, A review on the production and application of tall oil with a focus on sustainable fuels, Renew. Sustain. Energy Rev. 191 (2024) 114098. [3] D. Lee, H. Nam, M.W. Seo, S.H. Lee, D. Tokmurzin, S. Wang, Y.K. Park, Recent progress in the catalytic thermochemical conversion process of biomass for biofuels, Chem. Eng. J. 447 (2022) 137501. [4] P. Prasertpong, T. Onsree, N. Khuenkaeo, N. Tippayawong, J. Lauterbach, Exposing and understanding synergistic effects in co-pyrolysis of biomass and plastic waste via machine learning, Bioresour. Technol. 369 (2023) 128419. [5] A. Gil, I. Sancho-Sanz, S.A. Korili, Progress and perspectives in the catalytic hydrotreatment of bio-oils: effect of the nature of the metal catalyst, Ind. Eng. Chem. Res. 63 (27) (2024) 11759-11775. [6] Y.Y. Zhao, H. Cao, C.L. Yao, R. Li, Y.L. Wu, Synergistic effects on cellulose and lignite co-pyrolysis and co-liquefaction, Bioresour. Technol. 299 (2020) 122627. [7] Z.Q. Wu, W.C. Yang, X.Y. Tian, B.L. Yang, Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass, Energy Convers. Manag. 135 (2017) 212-225. [8] Z.L. Yao, K. Kang, H.B. Cong, J.X. Jia, L.L. Huo, Y. Deng, T. Xie, L.X. Zhao, Demonstration and multi-perspective analysis of industrial-scale co-pyrolysis of biomass, waste agricultural film, and bituminous coal, J. Clean. Prod. 290 (2021) 125819. [9] Z.Q. Wu, Y.W. Li, D.H. Xu, H.Y. Meng, Co-pyrolysis of lignocellulosic biomass with low-quality coal: Optimal design and synergistic effect from gaseous products distribution, Fuel 236 (2019) 43-54. [10] A. Shafizadeh, H. Shahbeik, S. Rafiee, Z. Fardi, K. Karimi, W.X. Peng, X.M. Chen, M. Tabatabaei, M. Aghbashlo, Machine learning-enabled analysis of product distribution and composition in biomass-coal co-pyrolysis, Fuel 355 (2024) 129464. [11] Q.C. Yang, R.J. Bao, D.W. Rong, J.X. Xiao, J.L. Zhou, L. Zhao, D.W. Zhang, Interpretable machine learning for accelerating reverse design and optimizing CO2 methanation catalysts with high activity at low temperatures, Ind. Eng. Chem. Res. 63 (33) (2024) 14727-14747. [12] W.Y. Mo, Z. Xiong, H. Leong, X. Gong, L. Jiang, J. Xu, S. Su, S. Hu, Y. Wang, J. Xiang, Processes simulation and environmental evaluation of biofuel production via co-pyrolysis of tropical agricultural waste, Energy 242 (2022) 123016. [13] S.L. Wang, Z.Y. Shi, Y.H. Jin, I.N. Zaini, Y. Li, C.C. Tang, W.Z. Mu, Y.M. Wen, J.C. Jiang, P.G. Jonsson, W.H. Yang, A machine learning model to predict the pyrolytic kinetics of different types of feedstocks, Energy Convers. Manag. 260 (2022) 115613. [14] S. Mohtaram, M. Sina Mohtaram, S. Sabbaghi, X.K. You, W.D. Wu, N. Golsanami, Enhancement strategies in CO2 conversion and management of biochar supported photocatalyst for effective generation of renewable and sustainable solar energy, Energy Convers. Manag. 300 (2024) 117987. [15] L. Peterson, J. Bremer, K. Sundmacher, Challenges in data-based reactor modeling: a critical analysis of purely data-driven and hybrid models for a CSTR case study, Comput. Chem. Eng. 184 (2024) 108643. [16] E. Mohammadi Golafshani, A. Kashani, A. Behnood, T. Kim, Modeling the chloride migration of recycled aggregate concrete using ensemble learners for sustainable building construction, J. Clean. Prod. 407 (2023) 136968. [17] M.H. Alobaidi, F. Chebana, M.A. Meguid, Robust ensemble learning framework for day-ahead forecasting of household based energy consumption, Appl. Energy 212 (2018) 997-1012. [18] D.W. Rong, Z. Wang, Q.W. Guo, R.J. Bao, Q.C. Yang, An auto-configurable and interpretable ensemble learning framework for optimal catalyst design of green methanol production via Bayesian optimization, J. Clean. Prod. 488 (2025) 144666. [19] N. Kardani, A.N. Zhou, M. Nazem, X.S. Lin, Modelling of municipal solid waste gasification using an optimised ensemble soft computing model, Fuel 289 (2021) 119903. [20] X.Q. Wen, K.C. Li, J.G. Wang, NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners, Energy 264 (2023) 126171. [21] J.L. Song, C.Y. Tang, S.Y. Yu, X.Y. Yang, L. Yang, Prediction of product yields using fusion model from co-pyrolysis of biomass and coal, Bioresour. Technol. 353 (2022) 127132. [22] H.K. Balsora, S. Kartik, V. Dua, J.B. Joshi, G. Kataria, A. Sharma, A.G. Chakinala, Machine learning approach for the prediction of biomass pyrolysis kinetics from preliminary analysis, J. Environ. Chem. Eng. 10 (3) (2022) 108025. [23] Q.C. Yang, Y.J. Fan, D.W. Rong, R.J. Bao, D.W. Zhang, An auto-configurable machine learning framework to optimize and predict catalysts for CO2 to light olefins process, AlChE. J. 70 (8) (2024) e18437. [24] R.J. Bao, F. Zhang, D.W. Rong, Z. Wang, Q.W. Guo, Q.C. Yang, An interpretable machine learning-based optimization framework for the optimal design of carbon dioxide to methane process, Energy Convers. Manag. 320 (2024) 119010. [25] V. Albergamo, W. Wohlleben, D.L. Plata, Tracking dynamic chemical reactivity networks with high-resolution mass spectrometry: a case of microplastic-derived dissolved organic carbon, Environ. Sci. Technol. 58 (9) (2024) 4314-4325. [26] R. Bakir, C. Orak, A. Yuksel, Optimizing hydrogen evolution prediction: a unified approach using random forests, lightGBM, and Bagging Regressor ensemble model, Int. J. Hydrog. Energy 67 (2024) 101-110. [27] X.Y. Zhu, X.Y. Shen, K.L. Chen, Z.Q. Zhang, Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM, Energy 296 (2024) 131221. [28] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker, A.L. Boulesteix, D.F. Deng, M. Lindauer, Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 13 (2) (2023) e1484. [29] L. Yang, A. Shami, On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing 415 (2020) 295-316. [30] Y.Q. Liu, Y.N. Sun, B. Xue, M.J. Zhang, G.G. Yen, K.C. Tan, A survey on evolutionary neural architecture search, IEEE Trans. Neural Netw. Learn. Syst. 34 (2) (2023) 550-570. [31] J. Meng, Y.J. Zhou, T.R. Ye, Y.T. Xiao, Y.Q. Lu, A.W. Zheng, B. Liang, Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches, Petrol. Sci. 20 (1) (2023) 277-294. [32] C.D. Fan, J.W. Wang, L.T. Yang, L.Y. Xiao, Z.Y. Ai, Efficient constrained large-scale multi-objective optimization based on reference vector-guided evolutionary algorithm, Appl. Intell. 53 (18) (2023) 21027-21049. [33] Y.B. Lin, Y. Qin, D.M. Ma, Z.H. Duan, Pore structure, adsorptivity and influencing factors of high-volatile bituminous coal rich in inertinite, Fuel 293 (2021) 120418. [34] S.Y. Sun, D.H. Xu, Y. Wei, Y.W. Zhi, G.Y. Jiang, Y. Guo, Influence laws of operating parameters on coal pyrolysis characteristics, J. Anal. Appl. Pyrolysis 167 (2022) 105684. [35] D.J. Lane, P.J. Ashman, M. Zevenhoven, M. Hupa, P.J. van Eyk, R. de Nys, O. Karlstrom, D.M. Lewis, Combustion behavior of algal biomass: carbon release, nitrogen release, and char reactivity, Energy Fuels 28 (1) (2014) 41-51. [36] M. Bhattacharyya, K.P. Shadangi, R. Purkayastha, P. Mahanta, K. Mohanty, Co-pyrolysis of coal and biomass blends: Impact of pyrolysis temperature and biomass blending on thermal stability of coal, and composition of pyrolysis products, Process. Saf. Environ. Prot. 187 (2024) 1010-1021. [37] Q. Liu, K.W. Pan, L.Y. Zhu, Y. Zhou, Y. Lu, S.X. Wang, Z. Ding, W.J. Du, Y. Zhou, Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO2, Green Chem. 25 (21) (2023) 8778-8790. |