Chinese Journal of Chemical Engineering ›› 2025, Vol. 85 ›› Issue (9): 238-250.DOI: 10.1016/j.cjche.2025.04.010
Previous Articles Next Articles
Bowen Shi, Jianye Xue, Hao Ye
Received:2024-11-08
Revised:2025-04-11
Accepted:2025-04-14
Online:2025-05-13
Published:2025-09-28
Contact:
Hao Ye,E-mail:haoye@tsinghua.edu.cn
Supported by:Bowen Shi, Jianye Xue, Hao Ye
通讯作者:
Hao Ye,E-mail:haoye@tsinghua.edu.cn
基金资助:Bowen Shi, Jianye Xue, Hao Ye. A soft sensing method for mechanical properties of hot-rolled strips based on improved co-training[J]. Chinese Journal of Chemical Engineering, 2025, 85(9): 238-250.
Bowen Shi, Jianye Xue, Hao Ye. A soft sensing method for mechanical properties of hot-rolled strips based on improved co-training[J]. 中国化学工程学报, 2025, 85(9): 238-250.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.04.010
| [1] M.A. Cavaliere, M.B. Goldschmit, E.N. Dvorkin, Finite element simulation of the steel plates hot rolling process, Int. J. Numer. Meth. Eng. 52 (12) (2001) 1411-1430. [2] H.Y. Ban, G. Shi, Y.J. Shi, Y.Q. Wang, Research progress on the mechanical property of high strength structural steels, Adv. Mater. Res. 250-253 (2011) 640-648. [3] P. Simecek, D. Hajduk, Prediction of mechanical properties of hot rolled steel products, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007)1-2. [4] J. Wu, L.L. Tang, S.Q. Jin, X. Li, H. Liu, D. Li, Y.Q. Liu, Q.L. Wang, Modeling an adaptive hybrid soft sensor with co-training learning toward applications in wastewater treatment, Ind. Eng. Chem. Res. 62 (41) (2023) 16841-16853. [5] H. Kay, S. Kay, M. Mowbray, A. Lane, C. Mendoza, P. Martin, D.D. Zhang, Constructing a symbolic regression-based interpretable soft sensor for industrial data analytics and product quality control, Ind. Eng. Chem. Res. 63 (9) (2024) 4083-4092. [6] Y.K. Xie, Y.L. Deng, Y. Wang, X.B. Guo, Effect of asymmetric rolling and subsequent ageing on the microstructure, texture and mechanical properties of the Al-Cu-Li alloy, J. Alloys Compd. 836 (2020) 155445. [7] W.W. Yan, R.C. Xu, K.D. Wang, T. Di, Z. Jiang, Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant, Ind. Eng. Chem. Res. 59 (10) (2020) 4589-4601. [8] F. Yan, L.Y. Kong, Y.R. Li, H.W. Zhang, C.J. Yang, L. Chai, A survey of data-driven soft sensing in ironmaking system: research status and opportunities, ACS Omega 9 (24) (2024) 25539-25554. [9] Y.Y. Yang, M. Mahfouf, D.A. Linkens, Q. Zhang, Tensile strength prediction for hot rolled steels by Bayesian neural network model, IFAC Proc. Vol. 42 (23) (2009) 255-260. [10] Z.W. Xu, X.M. Liu, K. Zhang, Mechanical properties prediction for hot rolled alloy steel using convolutional neural network, IEEE Access 7 (2019) 47068-47078. [11] I. Mohanty, R. Banerjee, A. Santara, S. Kundu, P. Mitra, Prediction of properties over the length of the coil during thermo-mechanical processing using DNN, ironmak steelmak 48 (8) (2021) 953-961. [12] G. Kostopoulos, S. Karlos, S. Kotsiantis, O. Ragos, Semi-supervised regression: a recent review, J. Intell. Fuzzy Syst. 35 (2)1483-1500. [13] Q.Q. Sun, Z.Q. Ge, Deep learning for industrial KPI prediction: when ensemble learning meets semi-supervised data, IEEE Trans. Ind. Inform. 17 (1) (2021) 260-269. [14] M.F. Abdel Hady, F. Schwenker, Semi-supervised learning. Handbook on Neural Information Processing. Springer Berlin Heidelberg, (2013), pp 15-239. [15] C.X. Jian, K.J. Yang, Y.H. Ao, Industrial fault diagnosis based on active learning and semi-supervised learning using small training set, Eng. Appl. Artif. Intell. 104 (2021) 104365. [16] X.D. Shi, W.L. Xiong, Adaptive ensemble learning strategy for semi-supervised soft sensing, J. Frankl. Inst. 357 (6) (2020) 3753-3770. [17] Z.Q. Ge, Semi-supervised data modeling and analytics in the process industry: Current research status and challenges, IFAC J. Syst. Contr. 16 (2021) 100150. [18] P. Wang, Y.C. Yin, X.G. Deng, Y.C. Bo, W.M. Shao, Semi-supervised echo state network with temporal-spatial graph regularization for dynamic soft sensor modeling of industrial processes, ISA Trans. 130 (2022) 306-315. [19] Y. Huang, C. Zhang, J. Yella, S. Petrov, X.Y. Qian, Y.F. Tang, X.Q. Zhu, S. Bom, GraSSNet: graph soft sensing neural networks, 2021 IEEE International Conference on Big Data (Big Data). December 15-18, 2021, Orlando, FL, USA. IEEE, (2021) 746-756. [20] Z.X. Song, X.L. Yang, Z.L. Xu, I. King, Graph-based semi-supervised learning: a comprehensive review, IEEE Trans. Neural Netw. Learn. Syst. 34 (11) (2023) 8174-8194. [21] J.Y. Liang, J.B. Cui, J. Wang, W. Wei, Graph-based semi-supervised learning via improving the quality of the graph dynamically, Mach. Learn. 110 (6) (2021) 1345-1388. [22] Y.W. Chong, Y. Ding, Q. Yan, S.M. Pan, Graph-based semi-supervised learning: a review, Neurocomputing 408 (2020) 216-230. [23] K.M.O. Vale, A.C. Gorgonio, F. Da Luz E Gorgonio, A.M. De Paula Canuto, An efficient approach to select instances in self-training and co-training semi-supervised methods, IEEE Access 10 (2021) 7254-7276. [24] S.W. Wu, J. Yang, G.M. Cao, Y.L. Qiu, G.G. Cheng, M.Y. Yao, J.X. Dong, Elevating prediction performance for mechanical properties of hot-rolled strips by using semi-supervised regression and deep learning, IEEE Access 8 (2020) 134124-134136. [25] J. Dong, Y.Z. Tian, K.X. Peng, Just-in-time learning-based soft sensor for mechanical properties of strip steel via multi-block weighted semisupervised models, IEEE Access 8 (2020) 123869-123881. [26] X. Ning, X.R. Wang, S.H. Xu, W.W. Cai, L.P. Zhang, L.N. Yu, W.F. Li, A review of research on co-training, Concurr. Comput. Pract. Exp. 35 (18) (2023) e6276. [27] C. Gao, J. Zhou, D.Q. Miao, J.J. Wen, X.D. Yue, Three-way decision with co-training for partially labeled data, Inf. Sci. 544 (2021) 500-518. [28] A. Rahate, R. Walambe, S. Ramanna, K. Kotecha, Multimodal co-learning: Challenges, applications with datasets, recent advances and future directions, Inf. Fusion 81 (2022) 203-239. [29] F. Min, Y. Li, L.Y. Liu, Self-paced safe co-training for regression. Advances in Knowledge Discovery and Data Mining. Springer International Publishing, (2022), pp 1-82. [30] R. Kihlman, M. Fasli, Improving the co-training algorithm to enhance semi-supervised learning results, In:2022 IEEE International Conference on Big Data (Big Data). Osaka, Japan. IEEE, (2022) 5962-5970. [31] A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training,In:Proceedings of the Eleventh Annual Conference on Computational Learning Theory. Madison Wisconsin USA. ACM, 1998. [32] J. Wang, S.W. Luo, X.H. Zeng, A random subspace method for co-training, In:2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Hong Kong, China. IEEE, (2008) 195-200. [33] Y. Yaslan, Z. Cataltepe, Co-training with relevant random subspaces, Neurocomputing 73 (10-12) (2010) 1652-1661. [34] L.C. Zheng, Y. Cheng, H.X. Yang, N. Cao, J.R. He, Deep co-attention network for multi-view subspace learning,In:Proceedings of the Web Conference 2021, Ljubljana Slovenia. ACM, 2021. [35] W.L. Weng, W.W. Zhou, J.Z. Chen, H. Peng, H.M. Cai, Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures, Neurocomputing 378 (2020) 375-386. [36] X. C. Sheng,X. D. Yue, Novel co-training algorithm based on rough sets, Application Research of Computers,30(12)(2013)3546-3550. (in Chinese). [37] Y.L. Gong, Q.W. Wu, SIVLC: improving the performance of co-training by sufficient-irrelevant views and label consistency, Appl. Intell. 53 (18) (2023) 20710-20729. [38] J. Du, C.X. Ling, Z.H. Zhou, When does cotraining work in real data? IEEE Trans. Knowl. Data Eng. 23 (5) (2011) 788-799. [39] Z.H. Zhou, M. Li, Tri-training: exploiting unlabeled data using three classifiers, IEEE Trans. Knowl. Data Eng. 17 (11) (2005) 1529-1541. [40] A. Masmoudi, H. Bellaaj, K. Drira, M. Jmaiel, A co-training-based approach for the hierarchical multi-label classification of research papers, Expert Syst. 38 (4) (2021) e12613. [41] H.M. Zhao, J.J. Zheng, W. Deng, Y.J. Song, Semi-supervised broad learning system based on manifold regularization and broad network, IEEE Trans. Circuits Syst. I Regul. Pap. 67 (3) (2020) 983-994. [42] I. Nassar, S. Herath, E. Abbasnejad, W. Buntine, G. Haffari, All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training,In:2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021. [43] Z.H. Zhou, M. Li, Semi-supervised regression with co-training, in: Proceedings of the 19th International Joint Conference on Artificial Intelligenc, Edinburgh, Scotland, UK,2005. [44] M.R. Amini, V. Feofanov, L. Pauletto, L. Hadjadj, E. Devijver, Y. Maximov, Self-training: a survey, (2022): 2202.12040. [45] D. Li, Y.Q. Liu, D.P. Huang, Development of semi-supervised multiple-output soft-sensors with co-training and tri-training MPLS and MRVM, Chemom. Intell. Lab. Syst. 199 (2020) 103970. [46] Q.X. Zhu, H.T. Zhang, Y. Tian, N. Zhang, Y. Xu, Y.L. He, Co-training based virtual sample generation for solving the small sample size problem in process industry, ISA Trans. 134 (2023) 290-301. [47] K.L. Li, J. Zhang, H.Y. Xu, S.Z. Luo, H.X. Li, A semi-supervised extreme learning machine method based on co-training, J. Comput. Inf. Syst. 9 (1) (2013) 207-214. [48] L. Bao, X.F. Yuan, Z.Q. Ge, Co-training partial least squares model for semi-supervised soft sensor development, Chemom. Intell. Lab. Syst. 147 (2015) 75-85. [49] Y.F. Li, D.M. Liang, Safe semi-supervised learning: a brief introduction, Front. Comput. Sci. 13 (4) (2019) 669-676. [50] Y. Gong, J. Lu, Co-training method combined with semi-supervised clustering and weighted k-nearest neighbor, Comput Eng. Appl. 55 (2019) 114-118l. [51] J. Lu, Y.L. Gong, A co-training method based on entropy and multi-criteria, Appl. Intell. 51 (6) (2021) 3212-3225. [52] Y.L. Gong, Q.W. Wu, D.D. Cheng, A co-training method based on parameter-free and single-step unlabeled data selection strategy with natural neighbors, Int. J. Mach. Learn. Cybern. 14 (8) (2023) 2887-2902. [53] G.Y. Deng, A.K. Tieu, L.H. Su, H.T. Zhu, M. Reid, Q. Zhu, C. Kong, Microstructural study and residual stress measurement of a hot rolling work roll material during isothermal oxidation, Int. J. Adv. Manuf. Technol. 102 (5) (2019) 2107-2118. [54] X. Li, R.P. Yu, P.F. Wang, R. Kang, Z.Q. Shu, Z.S. Yue, Z.Y. Zhao, X. Wang, T.J. Lu, Plastic deformation and ductile fracture of L907A ship steel at increasing strain rate and temperature, Int. J. Impact Eng. 174 (2023) 104515. [55] X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang, R.D.K. Misra, Microstructure-property relationship in a high strength-high toughness combination ultra-heavy gauge offshore plate steel: The significance of multiphase microstructure, Mater. Sci. Eng. A 689 (2017) 212-219. [56] M.C. Zhao, K. Yang, Y.Y. Shan, The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel, Mater. Sci. Eng. A 335 (1-2) (2002) 14-20. [57] S. Witek, A. Milenin, Numerical analysis of temperature and residual stresses in hot-rolled steel strip during cooling in coils, Arch. Civ. Mech. Eng. 18 (2) (2018) 659-668. [58] X.Y. Jiang, Z.Q. Ge, Improving the performance of just-In-time learning-based soft sensor through data augmentation, IEEE Trans. Ind. Electron. 69 (12) (2022) 13716-13726. [59] Z. Nasiri, S. Ghaemifar, M. Naghizadeh, H. Mirzadeh, Thermal mechanisms of grain refinement in steels: a review, Met. Mater. Int. 27 (7) (2021) 2078-2094. [60] A. Kabanov, G. Korpala, R. Kawalla, U. Prahl, Effect of hot rolling and cooling conditions on the microstructure, MA constituent formation, and pipeline steels mechanical properties, Steel Res. Int. 90 (6) (2019) 1800336. [61] A. Javaid, F. Czerwinski, Effect of hot rolling on microstructure and properties of the ZEK100 alloy, J. Magnes. Alloys 7 (1) (2019) 27-37. [62] L.H. Zhou, H.Y. Bi, F.L. Sui, W. Du, X.S. Fang, Influence of finish rolling temperature on microstructure and properties of hot-rolled SUS436L stainless steel, J. Mater. Eng. Perform. 32 (18) (2023) 8441-8451. [63] J. Teixeira, M. Moreno, S.Y.P. Allain, C. Oberbillig, G. Geandier, F. Bonnet, Intercritical annealing of cold-rolled ferrite-pearlite steel: Microstructure evolutions and phase transformation kinetics, Acta Mater. 212 (2021) 116920. [64] A. Oliver, A. Odena, C. Raffel, E.D. Cubuk, I.J. Goodfellow, Realistic evaluation of deep semi-supervised learning algorithms, in:Proceedings of the 32nd International Conference on Neural Information Processing System, Montreal, Canada,2018. [65] Y.F. Li, H.W. Zha, Z.H. Zhou, Learning safe prediction for semi-supervised regression, in: Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, US, 2017. [66] A. Kraskov, H. Stogbauer, P. Grassberger, Estimating mutual information, Phys. Rev. E 69 (6) (2004) 066138. [67] M. Ahmed, R. Seraj, S.M.S. Islam, The k-means algorithm: a comprehensive survey and performance evaluation, Electronics 9 (8) (2020) 1295. [68] P. Bhattacharjee, P. Mitra, A survey of density based clustering algorithms, Front. Comput. Sci. 15 (2021) 151308. [69] B.J. Frey, D. Dueck, Clustering by passing messages between data points, Science 315 (5814) (2007) 972-976. [70] H.X. Xu, Research on clustering algorithms in data mining2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Xi’an, China. IEEE, 2022. [71] J.M. Moreira de Lima, F.M. Ugulino de Araujo, Ensemble deep relevant learning framework for semi-supervised soft sensor modeling of industrial processes, Neurocomputing 462 (2021) 154-168. [72] Z. Li, H.P. Jin, S.L. Dong, B. Qian, B. Yang, X.G. Chen, Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data, Chem. Eng. Res. Des. 179 (2022) 510-526. [73] J.F. Liu, Y.Q. Chen, M.J. Liu, Z.T. Zhao, SELM: Semi-supervised ELM with application in sparse calibrated location estimation, Neurocomputing 74 (16) (2011) 2566-2572. [74] C. Shang, F. Yang, D.X. Huang, W.X. Lyu, Data-driven soft sensor development based on deep learning technique, J. Process. Contr. 24 (3) (2014) 223-233. [75] Z.L. Liao, X.L. Zhang, W. Su, K. Zhan, View-consistent heterogeneous network on graphs with few labeled nodes, IEEE Trans. Cybern. 53 (9) (2023) 5523-5532. |
| [1] | Abbas Daham, Abdeldjalil Zegaoui, Athar Ali Khan Gorar, Zhicheng Wang, Jun Wang, Zhiyi Guo, Zhongcheng Pan, Wenbin Liu, Mehdi Derradji. Thermal aging and pyrolysis behavior of hyperbranched polymers grafted carbon fibers reinforced phthalonitrile/cyanate ester blend composites [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 161-170. |
| [2] | Meiting Guo, Youting Wang, Ziliang Xie, Kok bing Tan, Fangsong Guo, Kang Sun, Jianchun Jiang, Guowu Zhan. Preparation and extrusion of ZSM-5 based on biomass templates for enhanced mechanical properties and catalytic pyrolysis performance [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 47-60. |
| [3] | Chen Liang, Weiqiang Chen, Linghong Yin, Xianli Wu, Jie Xu, Chunhua Du, Wangda Qu. Properties evolutions during carbonization of carbon foam using lignin as sole precursor [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 33-43. |
| [4] | Shuilai Qiu, Hang Wu, Fukai Chu, Lei Song. Boron nitride silicone rubber composite foam with low dielectric and high thermal conductivity [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 224-230. |
| [5] | Yang Wang, Ye Fang, Xudong Yang, Hongmin Cong, Zhengbai Zhao, Chao Yan. Enhanced thermal conductivity and mechanical properties of boron nitride@polymethylacrylimide/epoxy composites with self-assembled stable three-dimensional network [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 230-238. |
| [6] | Dali Gao, Chunjie Yang, Bo Yang, Yu Chen, Ruilong Deng. Minimax entropy-based co-training for fault diagnosis of blast furnace [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 231-239. |
| [7] | Jinlong Li, Xiaoqing Wang, Puxu Liu, Xiaohua Liu, Libo Li, Jinping Li. Shaping of metal-organic frameworks through a calcium alginate method towards ethylene/ethane separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 17-24. |
| [8] | Jie Wang, Ling Zhang, Chunzhong Li. Superhydrophobic and mechanically robust polysiloxane composite coatings containing modified silica nanoparticles and PS-grafted halloysite nanotubes [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 56-65. |
| [9] | Zhongxin Lin, Renliang Huang, Jiangjiexing Wu, Anastasia Penkova, Wei Qi, Zhimin He, Rongxin Su. Injectable self-healing nanocellulose hydrogels crosslinked by aluminum: Cellulose nanocrystals vs. cellulose nanofibrils [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 389-397. |
| [10] | Anrong Zeng, Yangtao Wang, Dajun Li, Juedong Guo, Qiaowen Chen. Preparation and antibacterial properties of polycaprolactone/quaternized chitosan blends [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 462-471. |
| [11] | Tadele Daniel Mekuria, Lei Wang, Chunhong Zhang, Ming Yang, Qingtao Lv, Diaa Eldin Fouad. Synthesis and characterization of high strength polyimide/silicon nitride nanocomposites with enhanced thermal and hydrophobic properties [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 446-453. |
| [12] | Guohao Du, Jianfeng Hu, Jianhui Zhou, Guangwu Wang, Shengli Guan, Hailing Liu, Man Geng, Chuang Lü, Yaoqiang Ming, Jinqing Qu. The study on the mechanical properties of PU/MF double shell selfhealing microcapsules [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1459-1473. |
| [13] | Abdeldjalil Zegaoui, Ruikun Ma, Abdul Qadeer Dayo, Mehdi Derradji, Jun Wang, Wenben Liu, Yile Xu, Wan'an Cai. Morphological, mechanical and thermal properties of cyanate ester/benzoxazine resin composites reinforced by silane treated natural hemp fibers [J]. Chin.J.Chem.Eng., 2018, 26(5): 1219-1228. |
| [14] | Khaliq Majeed, Mariam Al Ali AlMaadeed, Moustafa M. Zagho. Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films [J]. Chin.J.Chem.Eng., 2018, 26(2): 428-435. |
| [15] | Fenglei Bi, Jianqiang Shao, Zhenhao Xi, Ling Zhao, Di Liu. Synthesis and characterization of copolymers of poly(m-xylylene adipamide) and poly(ethylene terephthalate) oligomers by melt copolycondensation [J]. , 2016, 24(9): 1290-1297. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
