1 Rhoderick, G.C., Dorko, W.D., "Standards development of global warming gas species: Methane, nitrous oxide, trichlorofluoromethane, and dichlorodifluoromethane", Environ. Sci. Technol., 38, 2685-2692 (2004).2 Pérez-Ramírez, J., "Prospects of N2O emission regulations in the European fertilizer industry", Appl. Catal. B: Environ., 70, 31-35 (2007).3 Khalil, M.A.K., "Non-CO2 greenhouse gases in the atmosphere", Annu. Rev. Energy Environ., 24, 645-661 (1999).4 Aneja, V.P., Schlesinger, W.H., Erisman, J.W., "Effects of agriculture upon the air quality and climate: Research, policy, and regulations", Environ. Sci. Technol., 43, 4234-4240 (2009).5 Becker, K.H., Lörzer, J.C., Kurtenbach, R., Wiesen, P., Jensen, T.E., Wallington, T.J., "Nitrous oxide (N2O) emissions from vehicles", Environ. Sci. Technol., 33, 4134-4139 (1999).6 Giecko, G., Borowiecki, T., Gac, W., Kruk, J., "Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry", Catal. Today, 137, 403-409 (2008).7 Shimizu, A., Tanaka, K., Fujimori, M., "Abatement technologies for N2O emissions in the adipic acid industry", Chemosphere-Global Change Sci., 2, 425-434 (2000).8 Centi, G., Generali, P., dall'Olio, L., Perathoner, S., Rak, Z., "Removal of N2O from industrial gaseous streams by selective adsorption over metal-exchanged zeolites", Ind. Eng. Chem. Res., 39, 131-137 (2000).9 Wójtowicz, M.A., Miknis, F.P., Grimes, R.W., Smith, W.W., Serio, M.A., "Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas", J. Hazard. Mater., 74, 81-89 (2000).10 Li, L.D., Shen, Q., Yu, J.J., Hao, Z.G., Xu, Z.P., Lu, G.Q., "Fe-USY zeolite catalyst for effective decomposition of nitrous oxide", Environ. Sci. Technol., 41, 7901-7906 (2007).11 Heivia, M.A.G., Pérez-Ramírez, J., "Optimal hydrocarbon selection for catalytic N2O reduction over iron-containing ZSM-5 zeolite", Environ. Sci. Technol., 42, 8896-8900 (2008).12 Ates, A., "Characteristics of Fe-exchanged natural zeolites for the decomposition of N2O and its selective catalytic reduction with NH3", Appl. Catal. B: Environ., 76, 282-290 (2007).13 Debbagh, M.N., Salinas Martínez de Lecea, C., Pérez-Ramírez, J., "Catalytic reduction of N2O over steam-activated FeZSM-5 zeolite comparison of CH4, CO, and their mixtures as reductants with or without excess O2", Appl. Catal. B: Environ., 70, 335-341 (2007).14 Yoshida, M., Nobukawa, T., Ito, S., Tomishige, K., Kunimori, K., "Structure sensitivity of ion-exchanged Fe-MFI in the catalytic reduction of nitrous oxide by methane under an excess oxygen atmosphere", J. Catal., 223, 454-464 (2004).15 Nobukawa, T., Yoshida, M., Okumura, K., Tomishige, K., Kunimori, K., "Effect of reductants in N2O reduction over Fe-MFI catalysts", J. Catal., 229, 374-388 (2005).16 Kögel, M., Mönnig, R., Schwieger, W., Tissler, A., Turek, T., "Simultaneous catalytic removal of NO and N2O using Fe-MFI", J. Catal., 182, 470-478 (1999).17 van den Brink, R.W., Booneveld, S., Pels, J.R., Bakker, D.F., Verhaak, M.J.F.M., "Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe zeolite", Appl. Catal. B: Environ., 32, 73-81 (2001).18 Chaki, T., Arai, M., Ebina, T., Shimokawabe, M., "Catalytic reduction of N2O by C2H4 over Fe-ZSM-5: Formation and nature of carbonaceous deposits and influence of the addition of O2", J. Catal., 218, 220-226 (2003).19 Sjövall, H., Blint, R.J., Gopinath, A., Olsson, L., "A kinetic model for the selective catalytic reduction of NOx with NH3 over an Fe-zeolite catalyst", Ind. Eng. Chem. Res., 49, 39-52 (2010).20 Zhang, X.Y., Shen, Q., He, C., Ma, C.Y., Cheng, J., Li, L.D., Hao, Z.P., "Investigation of selective catalytic reduction of N2O by NH3 over an Fe-mordenite catalyst: Reaction mechanism and O2 Effect", ACS Catal., 2, 512-520 (2012).21 Holmgren, A., Andersson, B., "Mass transfer in monolith catalysts-CO oxidation experiments and simulations", Chem. Eng. Sci., 53, 2285-2298 (1998).22 Gupta, N., Balakotaiah, V., "Heat and mass transfer coefficients in catalytic monoliths", Chem. Eng. Sci., 56, 4771-4786 (2001).23 Groppi, G., Tronconi, E., "Theoretical analysis of mass and heat transfer in monolith catalysts with triangular channels", Chem. Eng. Sci., 52, 3521-3526 (1997).24 Das, S., Mukhopadhyay, A.K., Datta, S., Das, G.C., Basu, D., "Hard glass-ceramic coating by mocro wave processing", J. Eur. Ceram. Soc., 28, 729-738 (2008).25 Kern, F., Gadow, R., "Protective multilayer coatings for carbon-carbon composites", Surf. Coat. Tech., 151-152, 418-423 (2002).26 Martínez, T.L.M., Domínguez, M.I., Sanabria, N., Hernández, W.Y., Moreno, S., Molina, R., Odriozola, J.A., Centeno, M.A., "Deposition of Al-Fe pillared bentonites and gold supported Al-Fe pillared bentonites on metallic monoliths for catalytic oxidation reactions", Appl. Catal. A: Gen., 364, 166-173 (2009).27 Martínez-Hansen, V., Latorre, N., Royo, C., Romeo, E., García-Bordejé, E., Monzón, A., "Development of aligned carbon nanotubes layers over stainless steel mesh monoliths", Catal. Today, 147, S71-S75 (2009).28 Neri, G., Rizzo, G., Corigliano, F., Arrigo, I., Caprì, M., Luca, D., Modafferi, V., Donato, A., "A novel Pt/zeolite-based honeycomb catalyst for selective CO oxidation in a H2-rich mixture", Catal. Today, 147, S210-S214 (2009).29 Tronconi, E., Forzatti, P., "Adequacy of lumped parameter models for SCR reactors with monolith structure", AIChE J., 38, 201-210 (1992).30 Bhattacharya, M., Harold, M.P., Balakotaiah, V., "Shape normalization for catalytic monoliths", Chem. Eng. Sci., 59, 3737-3766 (2004).31 Bhattacharya, M., Harold, M.P., Balakotaiah, V., "Mass transfer coefficients in washcoated monoliths", AIChE J., 50, 2939-2955 (2004).32 Colombo, M., Nova, I., Tronconi, E., Schmeißer, V., Bandl-Konrad, B., Zimmermann, L., "NO/NO2/N2O-NH3 SCR reactions over a commercial Fe-zeolite catalyst for diesel exhaust aftertreatment: Intrinsic kinetics and monolith converter modeling", Appl. Catal. B: Environ., 111-112, 106-118 (2012).33 Forzatti, P., Nova, I., Tronconi, E., "New enhanced NH3-SCR" reaction for NOx emission control", Ind. Eng. Chem. Res., 49, 10386-10391 (2010).34 Nova, I., Bounechada, D., Maestri, R., Troconi, E., "Influence of the substrate properties on the performances of NH3-SCR monolithic catalysts for the aftertreatment of diesel exhaust: An experimental and modeling study", Ind. Eng. Chem. Res., 50, 299-309 (2011).35 Lei, Z.G., Wen, C.P., Zhang, J., Chen, B.H., "Selective catalytic reduction for NO removal: Comparison of transfer and reaction performances among monolith catalysts", Ind. Eng. Chem. Res., 50, 5942-5951 (2011).36 Ruggeri, M.P., Nova, I., Tronconi, E., "Experimental and modeling study of the impact of interphase and intraphase diffusional limitations on the DeNOx efficiency of a V-based extruded catalyst for NH3-SCR of Diesel exhausts", Chem. Eng. J., 207-208, 57-65 (2012).37 Debbagh, M.N., Bueno-López, A., Salinas Martínez de Lecea, C., Pérez-Ramírez, J., "Kinetics of the N2O+CO reaction over steam-activated FeZSM-5", Appl. Catal. A Gen., 327, 66-72 (2007).38 Kapteijn, F., Marbán, G., Rodriguez-Mirasol, J., Moulijin, J.A., "Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts", J. Catal., 167, 256-265 (1997).39 Pérez-Ramírez, J., Santosh Kumar, M., Brückner, A., "Reduction of N2O with CO over FeMFI zeolites: Influence of the preparation method on the iron species and catalytic behavior", J. Catal., 223, 13-27 (2004).40 Pérez-Ramírez, J., Kondratenko, E.V., Debbagh, M.N., "Transient studies on the mechanism of N2O activation and reaction with CO and C3H8 over Fe-silicalite", J. Catal., 233, 442-452 (2005).41 Guo, K., Tang, X.H., Zhou, X.M., Chemical Reaction Engineering, Chemical Industry Press, Beijing (2000). (in Chinese)42 Mei, H., Li, C.Y., Liu, H., Ji, S.F., "Simulation of catalytic combustion of methane in a monolith honeycomb reactor", Chin. J. Chem. Eng., 14, 56-64 (2006).43 Liu, W., Addiego, W.P., Sorensen, C.M., "Monolith reactor for the dehydrogenation of ethylbenzene to styrene", Ind. Eng. Chem. Res., 41, 3131-3138 (2002).44 Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., Turek, T., "Monoliths as multiphase reactors: A review, AIChE J., 50, 2918-2938 (2004).45 Hayes, R.E., Kolaczkowski, S.T., "A study of Nusselt and Sherwood numbers in a monolith reactor", Catal. Today, 47, 295-303 (1999).46 Eckert, E.R.G., Sakamoto, H., Simon, T.W., "The heat/mass transfer analogy factor, Nu/Sh, for boundary layers on turbine blade profiles", Int. J. Heat Mass Transfer, 44, 1223-1233 (2001).47 Chen, G.T., Chemical Reaction Engineering, 3rd edition, Chemical Industry Press, Beijing (2007). (in Chinese)48 Tomasic, V., Gomzi, Z., "Experimental and theoretical study of NO decomposition in a catalytic monolith reactor", Chem. Eng. Process., 43, 765-774 (2004). |