Chin.J.Chem.Eng. ›› 2014, Vol. 22 ›› Issue (8): 888-897.DOI: 10.1016/j.cjche.2014.06.012
• SELCTED PAPERS FROM THE 4TH INTERNATIONAL CONFERENCE ON STRUCTURED CATALYSTS AND REACTIONS • Previous Articles Next Articles
Min Xu, Hui Liu , Shengfu Ji, Chengyue Li
Received:
2014-01-05
Revised:
2014-03-17
Online:
2014-11-04
Published:
2014-08-28
Supported by:
Supported by the State Key Development Program for Basic Research of China (2006CB202503).
Min Xu, Hui Liu , Shengfu Ji, Chengyue Li
通讯作者:
Hui Liu
基金资助:
Supported by the State Key Development Program for Basic Research of China (2006CB202503).
Min Xu, Hui Liu,Shengfu Ji, Chengyue Li. Intensification of Deep Hydrodesulfurization Through a Two-stage Combination of Monolith and Trickle Bed Reactors[J]. Chin.J.Chem.Eng., 2014, 22(8): 888-897.
Min Xu, Hui Liu,Shengfu Ji, Chengyue Li. Intensification of Deep Hydrodesulfurization Through a Two-stage Combination of Monolith and Trickle Bed Reactors[J]. Chinese Journal of Chemical Engineering, 2014, 22(8): 888-897.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2014.06.012
[1] C. Schmitz, L. Datsevitch, A. Jess, Deep desulfurization of diesel oil: kinetic studiesand process-improvement by the use of a two-phase reactor with pre-saturator,Chem. Eng. Sci. 59 (14) (2004) 2821-2829.[2] E. Furimsky, Selection of catalysts and reactors for hydroprocessing, Appl. Catal. AGen. 171 (2) (1998) 177-206.[3] I.V. Babich, J.A. Moulijn, Science and technology of novel processes fordeep desulfurization of oil refinery streams: a review, Fuel 82 (6) (2003)607-631.[4] C.S. Song, X.L. Ma, New design approaches to ultra-clean diesel fuels by deepdesulfurization and deep dearomatization, Appl. Catal. B Environ. 41 (1-2) (2003)207-238.[5] C. Song, K.M. Reddy, Mesoporous molecular sieve MCM-41 supported Co-Mocatalyst for hydrodesulfurization of dibenzothiophene in distillate fuels, Appl.Catal. A Gen. 176 (1) (1999) 1-10.[6] X. Li, A.J. Wang, Z.C. Sun, C. Li, Y.K. Hu, Study on hydrodesulfurization kinetics ofdibenzothiophene over Ni2Wsulfides supported by siliceous MCM-41, Acta PetroleiSinica (Petroleum Processing Section) 19 (4) (2003) 1-7.[7] T.I. Korányi, Z. Vít, D.G. Poduval, R. Ryoo, H.S. Kim, E.J.M. Hensen, SBA-15-supportednickel phosphide hydrotreating catalysts, J. Catal. 253 (1) (2008) 119-131.[8] M. Sugioka, F. Sado, Y. Matsumoto, N. Maesaki, New hydrodesulfurization catalysts:noble metals supported on USY zeolite, Catal. Today 29 (1-4) (1996)255-259.[9] M. Sugioka, F. Sadoa, T. Kurosakaa, X.Wang, Hydrodesulfurization over noblemetalssupported on ZSM-5 zeolites, Catal. Today 45 (1-4) (1998) 327-334.[10] C.M. Wang, T.C. Tsai, I. Wang, Deep hydrodesulfurization over Co/Mo catalystssupported on oxides containing vanadium, J. Catal. 262 (2) (2009) 206-214.[11] D.H. Wang, W.H. Qian, A. Ishihara, T. Kabe, Elucidation of sulfidation state andhydrodesulfurization mechanism on Mo/TiO2 catalyst using 35S radioisotope tracermethods, Appl. Catal. A Gen. 224 (1-2) (2002) 191-199.[12] D.H. Wang, W. Li, M.H. Zhang, K. Tao, Promoting effect of fluorine on titaniasupportedcobalt-molybdenum hydrodesulfurization catalysts, Appl. Catal. A Gen.317 (1) (2007) 105-112.[13] E. Furimsky, Metal carbides and nitrides as potential catalysts for hydroprocessing,Appl. Catal. A Gen. 240 (2003) 1-28.[14] P.Y. Wu, S.F. Ji, L.H. Hu, J.Q. Zhu, C.Y. Li, Preparation, characterization, and catalyticproperties of the Mo2C/SBA-15 catalysts, J. Porous. Mater. 15 (2) (2008) 181-187.[15] X.Q.Wang, P. Clark, S.T. Oyama, Synthesis, characterization, and hydrotreating activityof several iron group transition metal phosphides, J. Catal. 208 (2) (2002)321-331.[16] Y.Y. Shu, Y.K. Lee, S.T. Oyama, Structure-sensitivity of hydrodesulfurization of 4,6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts, J.Catal. 236 (1) (2005) 112-121.[17] S.T. Oyama, Novel catalysts for advanced hydroprocessing: transition metalphosphides, J. Catal. 216 (1-2) (2003) 343-352.[18] S.T. Oyama, Y.K. Lee, The active site of nickel phosphide catalysts for thehydrodesulfurization of 4,6-DMDBT, J. Catal. 258 (2) (2008) 393-400.[19] S.T. Oyama, T. Gott, H.Y. Zhao, Y.K. Lee, Transition metal phosphide hydroprocessingcatalysts: a review, Catal. Today 143 (1-2) (2009) 94-107.[20] C.Q. Li, G.D. Sun, C.Y. Li, Y.J. Song, Preparation, characterization, hydrodesulfurizationand hydrodenitrogenation activities of alumina-supported tungsten phosphidecatalysts, Chin. J. Chem. Eng. 14 (2) (2006) 184-193.[21] A.W. Burns, A.F. Gaudette, M.E. Bussell, Hydrodesulfurization properties of cobalt-nickel phosphide catalysts: Ni-rich materials are highly active, J. Catal. 260 (2)(2008) 262-269.[22] J.A. Ojeda Nava, R. Krishna, In-situ stripping of H2S in gasoil hydrodesulphurization:reactor design considerations, Chem. Eng. Res. Des. 82 (2) (2004) 208-214.[23] R.K. Edvinsson, A. Cybulsk, A comparison between the monolithic reactor and thetrickle-bed reactor for liquid-phase hydrogenations, Catal. Today 24 (1-2) (1995)173-179.[24] M. Xu, H. Liu, C.Y. Li, Y. Zhou, S.F. Ji, Connection between liquid distribution andgas-liquid mass transfer in monolithic bed, Chin. J. Chem. Eng. 19 (5) (2011)738-746.[25] T.A. Nijhuis, M.T. Kreutzer, A.C.J. Romijn, F. Kapteijn, J.A. Moulijn, Monolithiccatalysts as efficient three-phase reactors, Chem. Eng. Sci. 56 (3) (2001) 823-829.[26] S. Roy, T. Bauer, M. Al-Dahhan, P. Lehner, T. Turek,Monoliths as multiphase reactors:a review, AICHE J. 50 (2004) 2918-2938.[27] H. Marwana, J.M. Winterbottom, The selective hydrogenation of butyne-1,4-diol bysupported palladiums: a comparative study on slurry, fixed bed, and monolithdownflow bubble column reactors, Catal. Today 97 (4) (2004) 325-330.[28] R.P. Fishwick, R. Natividad, R. Kulkarni, P.A.McGuire, J.Wood, J.M. Winterbottom, E.H.Stitt, Selective hydrogenation reactions: a comparative study of monolith CDC, stirredtank and trickle bed reactors, Catal. Today 128 (1-2) (2007) 108-114.[29] T.A. Nijhuis, F.M. Dautzenberg, J.A. Moulijna, Modeling of monolithic andtrickle-bed reactors for the hydrogenation of styrene, Chem. Eng. Sci. 58 (7)(2003) 1113-1124.[30] T. Bauer, R. Guettel, S. Roy, M. Schubert, M. Al-Dahhan, R. Lange, Modelling andsimulation of the monolithic reactor for gas-liquid-solid reactions, Chem. Eng. Res.Des. 83 (7) (2005) 811-819.[31] A.G. Bussard, Y.G. Waghmare, K.M. Dooley, F.C. Knopf, Hydrogenation ofα-methylstyrene in a piston-oscillating monolith reactor, Ind. Eng. Chem. Res. 47(14) (2008) 4623-4631.[32] A. Cybulski, A. Stankiewicz, R.K.E. Albers, J.A. Moulijn, Monolithic reactors forfine chemicals industries: a comparative analysis of a monolithic reactor anda mechanically agitated slurry reactor, Chem. Eng. Sci. 54 (13-14) (1999)2351-2358.[33] D.S. Liu, J.G. Zhang, D.F. Li, Q.D. Kong, T. Zhang, S.D. Wang, Hydrogenation of 2-ethylanthraquinone under Taylor flow in single square channel monolith reactors,AIChE J. 55 (3) (2009) 726-736.[34] C. Eisenbeis, R. Guettel, U. Kunz, T. Turek,Monolith loop reactor for hydrogenation ofglucose, Catal. Today 147S (2009) S342-S346.[35] S. Irandoust, O. Gahne, Competitive hydrodesulfurization and hydrogenation in amonolithic reactor, AICHE J. 36 (5) (1990) 746-752.[36] R. Edvinsson, S. Irandoust, Hydrodesulfurization of dibenzothiophene in amonolithiccatalyst reactor, Ind. Eng. Chem. Res. 32 (2) (1993) 391-395.[37] N. Wei, S.F. Ji, P.Y. Wu, Y.N. Guo, H. Liu, J.Q. Zhu, C.Y. Li, Preparation of nickelphosphide/SBA-15/cordierite monolithic catalysts and catalytic activity forhydrodesulfurization of dibenzothiophene, Catal. Today 147S (2009) S66-S70.[38] P.S. Ma, Handbook of Basic Data for Petrochemical Engineering, 2nd ed. ChemicalIndustry Press, Beijing, 1993. (in Chinese).[39] H. Korsten, U. Hoffmann, Three-phase reactor model for hydrotreating in pilottrickle-bed reactors, AIChE J. 42 (5) (1996) 1350-1360.[40] H. Liu, C.O. Vandu, R. Krishna, Hydrodynamics of Taylor flow in vertical capillaries:flow regimes, bubble rise velocity, liquid slug length and pressure drop, Ind. Eng.Chem. Res. 44 (14) (2005) 4884-4897.[41] G.F. Froment, K.B. Bischoff, Chemical Reactor Analysis and Design, 2nd ed. JohnWilley & Sons, New York, 1990.[42] Y. Wang, Z.C. Sun, A.J. Wang, L.F. Ruan, M.H. Lu, J. Ren, X. Li, C. Li, Y.K. Hu, P.J. Yao,Kinetics of hydrodesulfurization of dibenzothiophene catalyzed by sulfided Co-Mo/MCM-41, Ind. Eng. Chem. Res. 43 (10) (2004) 2324-2329.[43] X.Z. Yu, X.Q. Ren, Z.G. Dong, J. Wang, Y.R.Wang, Kinetics of the hydrodesulfurizationof dibenzoth iophene over a commercia NiW/Al2O3 catalyst, J. Fuel Chem. Technol. 33(4) (2005) 483-486 (in Chinese).[44] G.H. Singhal, R.L. Espino, J.E. Sobel, G.A. Huff, Hydrodesulfurization of sulfur heterocycliccompounds: kinetics of dibenzothiophene, J. Catal. 67 (2) (1981) 457-468.[45] M. Egorova, R. Prins, Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/γ-Al2O3, CoMo/γ-Al2O3, and Mo/γ-Al2O3 catalysts, J. Catal. 225 (2004) 417-427.[46] P. Steiner, E.A. Blekkan, Catalytic hydrodesulfurization of a light gas oil over a NiMocatalyst: kinetics of selected sulfur components, Fuel Process. Technol. 79 (1) (2002)1-12.[47] N.K. Nag, A.V. Sapre, D.H. Broderick, B.C. Gates, Hydrodesulfurization of polycyclicaromatics catalyzed by sulfide CoO-MoO/Al2O3: the relative reactivities, J. Catal. 57(3) (1979) 509-512.[48] M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. de Beer, B.C. Gates, H. Kwart,Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed bysulfided Co-Mo/Al2O3, J. Catal. 61 (2) (1980) 523-527.[49] M.T. Kreutzer, P. Du, J.J. Heiszwolf, F. Kapteijn, J.A.Moulijn, Mass transfer characteristicsof three-phase monolith reactors, Chem. Eng. Sci. 56 (21-22) (2001) 6015-6023.[50] M.V. Rajashekharam, R. Jaganathan, R.V. Chaudhari, A trickle-bed reactor model forhydrogenation of 2,4 dinitrotoluene: experimental verification, Chem. Eng. Sci. 53(4) (1998) 787-805.[51] M.J. Macías, J. Ancheyta, Simulation of an isothermal hydrodesulfurization small reactorwith different catalyst particle shapes, Catal. Today 98 (1-2) (2004) 243-252.[52] M.J. Girgis, B.C. Gates, Reactivities, reaction networks, and kinetics in high-pressurecatalytic hydroprocessing, Ind. Eng. Chem. Res. 30 (9) (1991) 2021-2058.[53] T. Kabe, A. Ishihara, Q. Zhang, Deep desulfurization of light oil. Part 2:hydrodesulfurization of dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, Appl. Catal. A Gen. 97 (1) (1993) L1-L9.[54] R. Shafi, G.J. Hutchings, Hydrodesulfurization of hindered dibenzothiophenes: anoverview, Catal. Today 59 (3-4) (2000) 423-442.[55] I. Mochida, K. Sakanishi, X.L. Ma, S. Nagao, T. Isoda, Deep hydrodesulfurization ofdiesel fuel: design of reaction process and catalysts, Catal. Today 29 (1-4) (1996)185-189.[56] X.L. Ma, K. Sakanishi, T. Isoda, I. Mochida, Hydrodesulfurization reactivities ofnarrow-cut fractions in a gas oil, Ind. Eng. Chem. Res. 34 (3) (1996) 748-754.[57] C.O. Vandu, H. Liu, R. Krishna, Mass transfer from Taylor bubbles rising in singlecapillaries, Chem. Eng. Sci. 60 (2005) 6430-6437.[58] J.M. van Baten, R. Krishna, CFD simulations of wall mass transfer for Taylor flow incircular capillaries, Chem. Eng. Sci. 60 (22) (2005) 1117-2126.[59] M. Xu, H. Huang, X.P. Zhan, H. Liu, S.F. Ji, C.Y. Li, Pressure drop and liquid hold-up inmultiphase monolithic reactor with different distributors, Catal. Today 147S (2009)S132-S137.[60] M.T. Kreutzer, M.G. van der Eijnden, F. Kapteijn, J.A. Moulijn, J.J. Heiszwolf, Thepressure drop experiment to determine slug lengths in multiphase monoliths,Catal. Today 105 (3-4) (2005) 667-672.[61] S. Goto, J.M. Smith, Trickle-bed reactor performance. Part I. Holdup and masstransfer effects, AIChE J. 21 (4) (1975) 706-713.[62] C.N. Satterfield, M. van Eek, G.S. Bliss, Liquid-solidmass transfer in packed bedswithdownward concurrent gas-liquid flow, AICHE J. 24 (4) (1978) 709-718.[63] I. Iliuta, F. Larachi, B.P.A. Grandjean, Residence time, mass transfer and back-mixingof the liquid in trickle flow reactors containing porous particles, Chem. Eng. Sci. 54(18) (1999) 4099-4109.[64] P.Z. Lu, J.M. Smith,M. Herskowitz, Gas-particle mass transfer in trickle beds, AIChE J.30 (3) (1984) 500-502.[65] J.M. Hochmann, E. Effron, Two-phase cocurrent downflow in packed beds, Ind. Eng.Chem. Fundam. 8 (1) (1969) 63-71.[66] P.L. Mills, M.P. Dudukovic, Evaluation of liquid-solid contacting in trickle-bedreactors by tracer methods, AIChE J. 27 (6) (1981) 893-904.[67] Y. Sato, T. Hirose, F. Takahashi, M. Toda, Flow pattern and pulsation properties ofcocurrent gas-liquid downflow in packed beds, J. Chem. Eng. Jpn 6 (4) (1973)147-156. |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[3] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[4] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[5] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[6] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[7] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[8] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[9] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[10] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[11] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[12] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[13] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[14] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126. |
[15] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||