Chinese Journal of Chemical Engineering ›› 2022, Vol. 49 ›› Issue (9): 46-75.DOI: 10.1016/j.cjche.2022.05.027
Previous Articles Next Articles
Ting He1,2, Songhong Yu1,2, Jinhui He1,2, Dejian Chen1,2, Jie Li1,2, Hongjun Hu1,2, Xingrui Zhong1,2, Yawei Wang4, Zhaohui Wang1,2,3, Zhaoliang Cui1,2,3
Received:
2021-10-01
Revised:
2022-05-09
Online:
2022-10-19
Published:
2022-09-28
Contact:
Zhaohui Wang,E-mail:zhwang@njut.edu.cn;Zhaoliang Cui,E-mail:zcui@njtech.edu.cn
Supported by:
Ting He1,2, Songhong Yu1,2, Jinhui He1,2, Dejian Chen1,2, Jie Li1,2, Hongjun Hu1,2, Xingrui Zhong1,2, Yawei Wang4, Zhaohui Wang1,2,3, Zhaoliang Cui1,2,3
通讯作者:
Zhaohui Wang,E-mail:zhwang@njut.edu.cn;Zhaoliang Cui,E-mail:zcui@njtech.edu.cn
基金资助:
Ting He, Songhong Yu, Jinhui He, Dejian Chen, Jie Li, Hongjun Hu, Xingrui Zhong, Yawei Wang, Zhaohui Wang, Zhaoliang Cui. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer[J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 46-75.
Ting He, Songhong Yu, Jinhui He, Dejian Chen, Jie Li, Hongjun Hu, Xingrui Zhong, Yawei Wang, Zhaohui Wang, Zhaoliang Cui. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer[J]. 中国化学工程学报, 2022, 49(9): 46-75.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.05.027
[1] X.J. Hao, S.S. Cheng, D.G. Wu, T.C. Wu, X.H. Lin, C.L. Wang, Reconstruction of the full transmission dynamics of COVID-19 in Wuhan, Nature 584 (7821) (2020) 420-424 [2] K. Ramanathan, D. Antognini, A. Combes, M. Paden, B. Zakhary, M. Ogino, G. MacLaren, D. Brodie, K. Shekar, Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic a nd other outbreaks of emerging infectious diseases, Lancet Respir. Med. 8 (5) (2020) 518-526 [3] X.Y. Hong, J. Xiong, Z.C. Feng, Y. Shi, Extracorporeal membrane oxygenation (ECMO):Does it have a role in the treatment of severe COVID-19? Int. J. Infect. Dis. 94 (2020) 78-80 [4] C.L. Huang, Y.M. Wang, X.W. Li, L.L. Ren, J.P. Zhao, Y. Hu, L. Zhang, G.H. Fan, J.Y. Xu, X.Y. Gu, Z.S. Cheng, T. Yu, J.A. Xia, Y. Wei, W.J. Wu, X.L. Xie, W. Yin, H. Li, B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (10223) (2020) 497-506 [5] D.W. Wang, B. Hu, C. Hu, F.F. Zhu, X. Liu, J. Zhang, B.B. Wang, H. Xiang, Z.S. Cheng, Y. Xiong, Y. Zhao, Y.R. Li, X.H. Wang, Z.Y. Peng, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA 323 (11) (2020) 1061-1069 [6] E. Valencia, V.G. Nasr, Updates in pediatric extracorporeal membrane oxygenation, J. Cardiothorac. Vasc. Anesth. 34 (5) (2020) 1309-1323 [7] R.R. Thiagarajan, R.P. Barbaro, P.T. Rycus, D.M. McMullan, S.A. Conrad, J.D. Fortenberry, M.L. Paden, Extracorporeal life support organization registry international report 2016, ASAIO J. 63 (1) (2017) 60-67 [8] D. Zhang, A. Karkooti, L. Liu, M. Sadrzadeh, T. Thundat, Y. Liu, R. Narain, Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes, J. Membr. Sci. 549 (2018) 350-356 [9] S. Klein, F. Hesselmann, S. Djeljadini, T. Berger, A.L. Thiebes, T. Schmitz-Rode, S. Jockenhoevel, C.G. Cornelissen, EndOxy:Dynamic long-term evaluation of endothelialized gas exchange membranes for a biohybrid lung, Ann. Biomed. Eng. 48 (2) (2020) 747-756 [10] Y.L. Dai, S.Y. Dai, X.H. Xie, J.P. Ning, Immobilizing argatroban and mPEG-NH2 on a polyethersulfone membrane surface to prepare an effective nonthrombogenic biointerface, J. Biomater. Sci. Polym. Ed. 30 (8) (2019) 608-628 [11] H.P. Zhu, X.R. Li, Y. Pan, G.P. Liu, H. Wu, M. Jiang, W.Q. Jin, Fluorinated PDMS membrane with anti-biofouling property for in situ biobutanol recovery from fermentation-pervaporation coupled process, J. Membr. Sci. 609 (2020) 118225 [12] O.O. Teber, A.D. Altinay, S.A.N. Mehrabani, R.S. Tasdemir, B. Zeytuncu, E.A. Genceli, E. Dulekgurgen, K. Pekkan, İ. Koyuncu, Polymeric hollow fiber membrane oxygenators as artificial lungs:A review, Biochem. Eng. J. 180 (2022) 108340 [13] T. Yeager, S. Roy, Evolution of gas permeable membranes for extracorporeal membrane oxygenation, Artif. Organs 41 (8) (2017) 700-709 [14] A.K. Evseev, S.V. Zhuravel, A.Y. Alentiev, I.V. Goroncharovskaya, S.S. Petrikov, Membranes in extracorporeal blood oxygenation technology, Membr. Membr. Technol. 1 (4) (2019) 201-211 [15] M. Dabaghi, N. Saraei, G. Fusch, N. Rochow, J.L. Brash, C. Fusch, P. Ravi Selvaganapathy, An ultra-thin, all PDMS-based microfluidic lung assist device with high oxygenation capacity, Biomicrofluidics 13 (3) (2019) 034116 [16] J.A. Gibbon, Application of a mechanical beart and lung apparatus to cardiac surgery, Minn. Med., 37 (1954) 171 [17] M.L. Bramson, J.J. Osborn, F.B. Main, M.F. O'Brien, J.S. Wright, F. Gerbode, A new disposable membrane oxygenator with integral heat exchange, J. Thorac. Cardiovasc. Surg. 50 (1965) 391-400 [18] D.F. Stamatialis, B.J. Papenburg, M. Gironés, S. Saiful, S.N.M. Bettahalli, S. Schmitmeier, M. Wessling, Medical applications of membranes:Drug delivery, artificial organs and tissue engineering, J. Membr. Sci. 308 (1-2) (2008) 1-34 [19] W.M. Zapol, Extracorporeal membrane oxygenation in severe acute respiratory failure, JAMA 242 (20) (1979) 2193 [20] R.H. Bartlett, A.B. Gazzaniga, R.F. Huxtable, H.C. Schippers, M.J. O'Connor, M.R. Jefferies, Extracorporeal circulation (ECMO) in neonatal respiratory failure, J. Thorac. Cardiovasc. Surg. 74 (6) (1977) 826-833 [21] J.B. Zwischenberger, T.T. Nguyen, J.R. Upp Jr, P.E. Bush, C.S. Cox Jr, T. Delosh, L. Broemling, Complications of neonatal extracorporeal membrane oxygenation. Collective experience from the Extracorporeal Life Support Organization, J. Thorac. Cardiovasc. Surg. 107 (3) (1994) 838-848;discussion848-9 [22] M. Czekajlo, M. Dabrowski, M. Puslecki, A. Drozd, L. Szarpak, Using ecmo VV in the COVID-19 pandemic, Disaster Emerg. Med. J. (2020):114-115 [23] P. Suwalski, J. Staromłyński, J. Brączkowski, M. Bartczak, S. Mariani, D. Drobiński, K. Szułdrzyński, R. Smoczyński, M. Franczyk, W. Sarnowski, A. Gajewska, A. Witkowska, W. Wierzba, A. Zaczyński, Z. Król, E. Olek, M. Pasierski, J.M. Ravaux, M.E. de Piero, R. Lorusso, M. Kowalewski, Transition from simple V-V to V-A and hybrid ECMO configurations in COVID-19 ARDS, Membranes 11 (6) (2021) 434 [24] J. Tie, C.L. Cai, Y.X. Weng, Research progress of membrane materials in extracorporeal membrane oxygen system, Membrane Science and Technology, 40 (2020) 141-147 [25] M.C. Bélanger, Y. Marois, Hemocompatibility, biocompatibility, inflammatory andin vivostudies of primary reference materials low-density polyethylene and polydimethylsiloxane:A review, J. Biomed. Mater. Res. 58 (5) (2001) 467-477 [26] J.E. Millar, J.P. Fanning, C.I. McDonald, D.F. McAuley, J.F. Fraser, The inflammatory response to extracorporeal membrane oxygenation (ECMO):A review of the pathophysiology, Crit. Care 20 (1) (2016) 387 [27] H.J. Cho, D.W. Kim, G.S. Kim, I.S. Jeong, Anticoagulation therapy during extracorporeal membrane oxygenator support in pediatric patients, Chonnam Med. J. 53 (2) (2017) 110-117 [28] G.H.A. Clowes Jr, A.L. Hopkins, W.E. Neville, An artificial lung dependent upon diffusion of oxygen and carbon dioxide through plastic membranes, J. Thorac. Surg. 32 (5) (1956) 630-637 [29] L.T. Skeggs, J.R. Leonards, C.R. Heisler, Artificial kidney. II. construction and operation of an improved continuous dialyzer, Exp. Biol. Med. 72 (3) (1949) 539-543 [30] M.W. Lim, The history of extracorporeal oxygenators, Anaesthesia 61 (10) (2006) 984-995 [31] D.G. Melrose, M.L. Bramson, J.J. Osborn, F. Gerbode, The membrane oxygenator; some aspects of oxygen and carbon dioxide transport across polyethylene film, Lancet 1 (7029) (1958) 1050-1051 [32] W.J. Kolff, Results in patients treated with the coil kidney (disposable dialyzing unit), J. Am. Med. Assoc. 161 (15) (1956) 1433 [33] T. Kolobow, R.G. Spragg, J.E. Pierce, W.M. Zapol, Extended term (to 16 days) partial extracorporeal blood gas exchange with the spiral membrane lung in unanesthetized lambs, Trans. Am. Soc. Artif. Intern. Organs 17 (1971) 350-354 [34] K. Suma, T. Tsuji, Y. Takeuchi, K. Inoue, K. Shiroma, T. Yoshikawa, J. Narumi, Clinical performance of microporous polypropylene hollow-fiber oxygenator, Ann. Thorac. Surg. 32 (6) (1981) 558-562 [35] G.J. Peek, H.M. Killer, R. Reeves, A.W. Sosnowski, R.K. Firmin, Early experience with a polymethyl pentene oxygenator for adult extracorporeal life support, Asaio J. 48 (5) (2002) 480-482 [36] S. Horton, C. Thuys, M. Bennett, S. Augustin, M. Rosenberg, C. Brizard, Experience with the jostra rotaflow and QuadroxD oxygenator for ECMO, Perfusion 19 (1) (2004) 17-23 [37] C. M. Alwardt, P. A. DeValeria, A. Sen, C. A. Thunberg, P. Bhalla, S. Blakeman, J. D'Cunha, S. Ravanbakhsh, First use of a novel extracorporeal life support system:successful application in tracheoesophageal fistula repair, The Journal of Extra Corporeal Technology, 54 (2022)73-78 [38] C. Hamilton, D. Marin, F. Weinbrenner, B. Engelhardt, D. Rosenzweig, U. Beck, P. Borisov, S. Hohe, A new method to measure oxygenator oxygen transfer performance during cardiopulmonary bypass:Clinical testing using the Medtronic Fusion oxygenator, Perfusion 32 (2) (2017) 133-140 [39] J. Noora, A. Lamy, K.M. Smith, R. Kent, D. Batt, J. Fedoryshyn, X.Y. Wang, The effect of oxygenator membranes on blood:A comparison of two oxygenators in open-heart surgery, Perfusion 18 (5) (2003) 313-320 [40] E. Gygax, H. Jenni, E. Zermatten, T. Carrel, A. Kadner, Klinische evaluation des medtronic affinity pixie oxygenators, Kardiotechnik 2 (2014) 47–50. [41] A. Loforte, A. Montalto, F. Ranocchi, P.L. Della Monica, G. Casali, A. Lappa, A. Menichetti, C. Contento, F. Musumeci, Peripheral extracorporeal membrane oxygenation system as salvage treatment of patients with refractory cardiogenic shock:Preliminary outcome evaluation, Artif. Organs 36 (3) (2012) E53-E61 [42] A. Philipp, F. de Somer, M. Foltan, A. Bredthauer, L. Krenkel, F. Zeman, K. Lehle, Life span of different extracorporeal membrane systems for severe respiratory failure in the clinical practice, PLoS One 13 (6) (2018) e0198392 [43] A.D. Milano, M. Dodonov, F. Onorati, T. Menon, L. Gottin, G. Malerba, A. Mazzucco, G. Faggian, Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass, Interact. Cardiovasc. Thorac. Surg. 17 (5) (2013) 811-817 [44] R.W. Melchior, K. Schiavo, T. Frey, D. Rogers, J. Patel, K. Chelnik, T. Rosenthal, Evaluation of the Maquet Neonatal and Pediatric Quadrox I with an integrated arterial line filter during cardiopulmonary bypass, Perfusion 27 (5) (2012) 399-406 [45] B. Meyns, L. Vercaemst, E. Vandezande, H. Bollen, D. Vlasselaers, Plasma leakage of oxygenators in ECMO depends on the type of oxygenator and on patient variables, Int. J. Artif. Organs 28 (1) (2005) 30-34 [46] J. Rambaud, J. Guilbert, I. Guellec, S. Renolleau, A pilot study comparing two polymethylpentene extracorporeal membrane oxygenators, Perfusion 28 (1) (2013) 14-20 [47] A.B. Hodge, M.A. Deitemyer, V.L. Duffy, D. Tumin, D.A. Garbin, K.K. Nicol, D. Hayes Jr, M.J. Cismowski, A.R. Yates, Plasma free hemoglobin generation using the EOS PMPTM oxygenator and the centriMag® blood pump, The Journal of Extra-corporeal Technology, 50 (2018) 94-98 [48] M. Pieri, O.G. Turla, M.G. Calabrò, L. Ruggeri, N. Agracheva, A. Zangrillo, F. Pappalardo, A new phosphorylcholine-coated polymethylpentene oxygenator for extracorporeal membrane oxygenation:A preliminary experience, Perfusion 28 (2) (2013) 132-137 [49] I. Condello, R. Lorusso, G. Santarpino, F. Fiore, G. Nasso, G. Speziale, Clinical evaluation of micro-embolic activity with unexpected predisposing factors and performance of horizon AF PLUS during cardiopulmonary bypass, Membranes 12 (5) (2022) 465 [50] J.A. Tinius, D. Dragomer, F. Klutka, A. VanBebber, K. Cerney, The Capiox RX05 oxygenator:Pediatric clinical observations, Perfusion 18 (5) (2003) 321-323 [51] M. Moroi, M. Force, S.G. Wang, A.R. Kunselman, A. Ündar, In vitro comparison of pediatric oxygenators with and without integrated arterial filters in maintaining optimal hemodynamic stability and managing gaseous microemboli, Artif. Organs 42 (4) (2018) 420-431 [52] S.G. Wang, A.R. Kunselman, A. Ündar, Evaluation of capiox RX25 and quadrox-i adult hollow fiber membrane oxygenators in a simulated cardiopulmonary bypass circuit, Artif. Organs 40 (5) (2016) E69-E78 [53] C. Nigro Neto, G. Landoni, M.A. Tardelli, A novel anti-pollution filter for volatile agents during cardiopulmonary bypass:preliminary tests, J. Cardiothorac. Vasc. Anesth. 31 (4) (2017) 1218-1222 [54] A. Park, Y.J. Song, E. Yi, B.T. Duy Nguyen, D. Han, E. Sohn, Y. Park, J. Jung, Y.M. Lee, Y.H. Cho, J.F. Kim, Blood oxygenation using fluoropolymer-based artificial lung membranes, ACS Biomater. Sci. Eng. 6 (11) (2020) 6424-6434 [55] W.P. Wang, X. Huang, H.Y. Yin, W.L. Fan, T. Zhang, L. Li, C. Mao, Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs:Plasma modification and haemocompatibility improvement, Biomed. Mater. 10 (6) (2015) 065022 [56] O.T. Beek, D. Pavlenko, M. Suck, S. Helfrich, L. Bolhuis-Versteeg, D. Snisarenko, C. Causserand, P. Bacchin, P. Aimar, R. van Oerle, R. Wetzels, P. Verhezen, Y. Henskens, D. Stamatialis, New membranes based on polyethersulfone-SlipSkinTM polymer blends with low fouling and high blood compatibility, Sep. Purif. Technol. 225 (2019) 60-73 [57] M.J. Liu, P. Li, Q.W. Meng, Q.C. Ge, Membranes constructed by metal-ligand complexation for efficient phosphorus removal and fouling resistance in forward osmosis, Adv. Compos. Hybrid Mater. 5 (1) (2022) 159-172 [58] A. Roy, P. Dadhich, S. Dhara, S. De, In vitro cytocompatibility and blood compatibility of polysulfone blend, surface-modified polysulfone and polyacrylonitrile membranes for hemodialysis, RSC Adv. 5 (10) (2015) 7023-7034 [59] Y. Chang, W.J. Chang, Y.J. Shih, T.C. Wei, G.H. Hsiue, Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization, ACS Appl. Mater. Interfaces 3 (4) (2011) 1228-1237 [60] L.C. Peng, H. Li, Y.H. Meng, Layer-by-layer structured polysaccharides-based multilayers on cellulose acetate membrane:Towards better hemocompatibility, antibacterial and antioxidant activities, Appl. Surf. Sci. 401 (2017) 25-39 [61] R. Nayak, I.L. Kyratzis, Y.B. Truong, R. Padhye, L. Arnold, Melt-electrospinning of polypropylene with conductive additives, J. Mater. Sci. 47 (17) (2012) 6387-6396 [62] R. Augustine, A. Hasan, V.K. Yadu Nath, J. Thomas, A. Augustine, N. Kalarikkal, A.A. Moustafa, S. Thomas, Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications, J. Mater. Sci. Mater. Med. 29 (11) (2018) 163 [63] T.Y. Zhu, X.X. Zhao, M. Yi, S. Xu, Y. Wang, Ternary cross-linked PVA-APTES-ZIF-90 membrane for enhanced ethanol dehydration performance, Adv. Compos. Hybrid Mater. 5 (1) (2022) 91-103 [64] G. Stein, K. Günther, H. Sperschneider, H. Carlsohn, M. Hüller, K. Schubert, R. Schaller, Clinical evaluation of a new dialyzer, FLX-12 GW, with a polyester-polymer alloy membrane, Artif. Organs 17 (5) (1993) 339-345 [65] H. Kawakami, M. Mikawa, J. Takagi, S. Nagaoka, Gas transfer and blood compatibility of fluorinated polyimide membranes, J. Biomater. Sci. Polym. Ed. 7 (12) (1996) 1029-1038 [66] J.H. Huang, X.Q. Cheng, Y.D. Wu, Y.Q. Zhang, S.W. Li, C.H. Lau, L. Shao, Critical operation factors and proposed testing protocol of nanofiltration membranes for developing advanced membrane materials, Adv. Compos. Hybrid Mater. 4 (4) (2021) 1092-1101 [67] M. Liu, S.H. Liu, Z.L. Xu, Y.M. Wei, H. Yang, Formation of microporous polymeric membranes via thermally induced phase separation:A review, Front. Chem. Sci. Eng. 10 (1) (2016) 57-75 [68] J.M. Stubbs, Y.G. Durant, D.C. Sundberg, Polymer phase separation in composite latex particles. 1. Considerations for the nucleation and growth mechanism, Comptes Rendus Chimie 6 (11-12) (2003) 1217-1232 [69] D.R. Lloyd, S.S. Kim, K.E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid-liquid phase separation, J. Membr. Sci. 64 (1-2) (1991) 1-11 [70] P. van de Witte, P.J. Dijkstra, J.W.A. van den Berg, J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation, J. Membr. Sci. 117 (1-2) (1996) 1-31 [71] S.S. Kim, D.R. Lloyd, Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes, J. Membr. Sci. 64 (1-2) (1991) 13-29 [72] H.J. Tao, J. Zhang, X.L. Wang, J.L. Gao, Phase separation and polymer crystallization in a poly(4-methyl-1-pentene)-dioctylsebacate-dimethylphthalate system via thermally induced phase separation, J. Polym. Sci. B Polym. Phys. 45 (2) (2007) 153-161 [73] H.J. Tao, Q. Xia, S. Jun, J. Zhang, X. Wang, Solid-liquid phase separation of poly-4-methyl-1-pentene/diluent system via thermally induced phase separation, Desalination Water Treat. 17 (1-3) (2010) 294-303 [74] C.M. Hansen, Hansen Solubility Parameters, CRC Press, Boca Raton, FL,USA, 2007 [75] B. Zhou, Y.H. Tang, Q. Li, Y.K. Lin, M. Yu, Y. Xiong, X.L. Wang, Preparation of polypropylene microfiltration membranes via thermally induced (solid-liquid or liquid-liquid) phase separation method, J. Appl. Polym. Sci. 132 (35) (2015)42490 [76] S.J. Chen, J. Jin, J. Zhang, Non-isothermal crystallization behaviors of poly(4-methyl-pentene-1), J. Therm. Anal. Calorim. 103 (1) (2011) 229-236 [77] S.H. Wang, W.B. Xu, Z.F. Zhou, F.M. Ren, Non-isothermal melt crystallization kinetics of anhydrite-filled polypropylene composites, J. Wuhan Univ. Technol. Mater Sci Ed 25 (1) (2010) 12-19 [78] X.B. Dong, D. Lu, T.A.L. Harris, I.C. Escobar, Polymers and solvents used in membrane fabrication:A review focusing on sustainable membrane development, Membranes 11 (5) (2021) 309 [79] E.G. Ayman, A. Heba, A. Sahar, Construction of ternary phase diagram and membrane morphology evaluation for polyamide/formic acid/water system, Aust. J. Basic Appl. Sci. 6 (2012) 62-68 [80] Z.H. Liu, J. Xiang, X.L. Hu, P.G. Cheng, L. Zhang, W. Du, S.B. Wang, N. Tang, Effects of coagulation-bath conditions on polyphenylsulfone ultrafiltration membranes, Chin. J. Chem. Eng. 34 (2021) 332-340 [81] D.M. Wang, F.C. Lin, J.C. Chiang, J.Y. Lai, Control of the porosity of asymmetric TPX membranes, J. Membr. Sci. 141 (1) (1998) 1-12 [82] J.Y. Lai, F.C. Lin, C.C. Wang, D.M. Wang, Effect of nonsolvent additives on the porosity and morphology of asymmetric TPX membranes, J. Membr. Sci. 118 (1) (1996) 49-61 [83] W. Li, L. Wang, X. Meng, X. Wang, W. Yuan, D. Huang, Effect of high-concentration first coagulation bath retention time on the structures and properties of PVDF membrane, Technology of Water Treatment, 37 (2011) 51-54 [84] D.J. Luo, X. Sun, J. Gao, G.Y. Xie, S.H. Qin, Structure regulation of polypropylene/poly(ethylene-co-vinyl alcohol) hollow fiber membranes with a bimodal microporous structure prepared by melt-spinning and stretching:The role of melt-draw ratio, Ind. Eng. Chem. Res. 60 (37) (2021) 13674-13683 [85] A. Saffar, A. Ajji, P.J. Carreau, M.R. Kamal, The impact of new crystalline lamellae formation during annealing on the properties of polypropylene based films and membranes, Polymer 55 (14) (2014) 3156-3167 [86] M. Pelzer, T. Vad, A. Becker, T. Gries, S. Markova, V. Teplyakov, Melt spinning and characterization of hollow fibers from poly(4-methyl-1-pentene), J. Appl. Polym. Sci. 138 (1) (2021) 49630 [87] J.L. Wang, Z.K. Xu, Y.Y. Xu, Preparation of poly(4-methyl-1-pentene) asymmetric or microporous hollow-fiber membranes by melt-spun and cold-stretch method, J. Appl. Polym. Sci. 100 (3) (2006) 2131-2141 [88] S.H. Tabatabaei, A. Ajji, Effect of initial crystalline morphology on properties of polypropylene cast films, J. Plast. Film Sheeting 27 (3) (2011) 223-233 [89] D. Li, Y. Xia, Electrospinning of nanofibers:Reinventing the wheel? Adv. Mater. 16 (14) (2004) 1151-1170 [90] C.X. Lyu, P. Zhao, J. Xie, S.Y. Dong, J.W. Liu, C.C. Rao, J.Z. Fu, Electrospinning of nanofibrous membrane and its applications in air filtration:A review, Nanomaterials (Basel) 11 (6) (2021) 1501 [91] J.C. Fu, J.L. Zhang, C.H. Zhao, Y. Peng, X.D. Li, Y.M. He, Z.X. Zhang, X.J. Pan, N.J. Mellors, E.Q. Xie, Solvent effect on electrospinning of nanotubes:The case of magnesium ferrite, J. Alloys Compd. 577 (2013) 97-102 [92] K.H. Lee, S. Givens, D.B. Chase, J.F. Rabolt, Electrostatic polymer processing of isotactic poly(4-methyl-1-pentene) fibrous membrane, Polymer 47 (23) (2006) 8013-8018 [93] M.A. Mazzeffi, K. Tanaka, A. Roberts, R. Rector, J. Menaker, Z. Kon, K.B. Deatrick, D. Kaczorowski, B. Griffith, D. Herr, Bleeding, thrombosis, and transfusion with two heparin anticoagulation protocols in venoarterial ECMO patients, J. Cardiothorac. Vasc. Anesth. 33 (5) (2019) 1216-1220 [94] G. Lip, K. Peter, I. Ahrens, New oral anticoagulant drugs in cardiovascular disease, Thromb. Haemost. 104 (7) (2010) 49-60 [95] R.E. Treybal, Mass-transfer operation, In:Intemational Student Edition, Chemical Engineering Series, 3rd. McGraw-Hill, New York,USA (1981) [96] M. Pflaum, M. Kühn-Kauffeldt, S. Schmeckebier, D. Dipresa, K. Chauhan, B. Wiegmann, R.J. Haug, J. Schein, A. Haverich, S. Korossis, Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung, Acta Biomater. 50 (2017) 510-521 [97] S. Movafaghi, V. Leszczak, W. Wang, J.A. Sorkin, L.P. Dasi, K.C. Popat, A.K. Kota, Hemocompatibility of superhemophobic titania surfaces, Adv. Healthc. Mater. 6 (4) (2017) 1600717 [98] W.H. Lee, C.Y. Loo, R. Rohanizadeh, A review of chemical surface modification of bioceramics:Effects on protein adsorption and cellular response, Colloids Surf. B Biointerfaces 122 (2014) 823-834 [99] S.H. Ye, D.T. Arazawa, Y. Zhu, V. Shankarraman, A.D. Malkin, J.D. Kimmel, L.J. Gamble, K. Ishihara, W.J. Federspiel, W.R. Wagner, Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs, Langmuir 31 (8) (2015) 2463-2471 [100] W.P. Wang, Z. Zheng, X. Huang, W.L. Fan, W.K. Yu, Z.B. Zhang, L. Li, C. Mao, Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification, J. Biomed. Mater. Res. 105 (7) (2017) 1737-1746 [101] P. Fan, Y.Y. Gao, M.L. Zheng, T. Xu, P. Schoenhagen, Z.H. Jin, Recent progress and market analysis of anticoagulant drugs, J. Thorac. Dis. 10 (3) (2018) 2011-2025 [102] M. Bijak, J. Saluk, R. Szelenberger, P. Nowak, Popular naturally occurring antioxidants as potential anticoagulant drugs, Chem. Biol. Interact. 257 (2016) 35-45 [103] M. Coppens, J.W. Eikelboom, D. Gustafsson, J.I. Weitz, J. Hirsh, Translational success stories:Development of direct thrombin inhibitors, Circ. Res. 111 (7) (2012) 920-929 [104] J. Momand, G.P. Zambetti, D.C. Olson, D. George, A.J. Levine, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation, Cell 69 (7) (1992) 1237-1245 [105] L.P. Zhu, J.Z. Yu, Y.Y. Xu, Z.Y. Xi, B.K. Zhu, Surface modification of PVDF porous membranes via poly(DOPA) coating and heparin immobilization, Colloids Surf. B Biointerfaces 69 (1) (2009) 152-155 [106] S. Okamoto, A. Hijikata, R. Kikumoto, S. Tonomura, H. Hara, K. Ninomiya, A. Maruyama, M. Sugano, Y. Tamao, Potent inhibition of thrombin by the newly synthesized arginine derivative No. 805. The importance of stereo-structure of its hydrophobic carboxamide portion, Biochem. Biophys. Res. Commun. 101 (2) (1981) 440-446 [107] M. Menk, P. Briem, B. Weiss, M. Gassner, D. Schwaiberger, A. Goldmann, C. Pille, S. Weber-Carstens, Efficacy and safety of argatroban in patients with acute respiratory distress syndrome and extracorporeal lung support, Ann Intensive Care 7 (1) (2017) 82 [108] Z.H. An, Y.Y. Li, R. Xu, F.Y. Dai, Y.P. Zhao, L. Chen, New insights in poly(vinylidene fluoride) (PVDF) membrane hemocompatibility:Synergistic effect of PVDF-g-(acryloyl morpholine) and PVDF-g-(poly(acrylic acid)-argatroban) copolymers, Appl. Surf. Sci. 457 (2018) 170-178 [109] T.E. Warkentin, Bivalent direct thrombin inhibitors:Hirudin and bivalirudin, Best Pract. Res. Clin. Haematol. 17 (1) (2004) 105-125 [110] A. Greinacher, A. Koster, T. Warkentin, Bivalirudin, Thromb. Haemost. 99 (11) (2008) 830-839 [111] T.M. Maul, M.P. Massicotte, P.D. Wearden, ECMO biocompatibility:Surface coatings, anticoagulation, and coagulation monitoring. In:Extracorporeal Membrane Oxygenation:Advances in Therapy. InTech, 2016:https://www.intechopen.com/chapters/51450 [112] Z.L. Yang, Q.F. Tu, M.F. Maitz, S. Zhou, J. Wang, N. Huang, Direct thrombin inhibitor-bivalirudin functionalized plasma polymerized allylamine coating for improved biocompatibility of vascular devices, Biomaterials 33 (32) (2012) 7959-7971 [113] Y. Yang, X.Y. Li, H. Qiu, P. Li, P.K. Qi, M.F. Maitz, T.X. You, R. Shen, Z.L. Yang, W.J. Tian, N. Huang, Polydopamine modified TiO2 nanotube arrays for long-term controlled elution of bivalirudin and improved hemocompatibility, ACS Appl. Mater. Interfaces 10 (9) (2018) 7649-7660 [114] Y.Q. Chen, X. Zhang, S. Zhao, M.F. Maitz, W.T. Zhang, S. Yang, J.L. Mao, N. Huang, G.J. Wan, In situ incorporation of heparin/bivalirudin into a phytic acid coating on biodegradable magnesium with improved anticorrosion and biocompatible properties, J. Mater. Chem. B 5 (22) (2017) 4162-4176 [115] E. Dejana, Endothelial cell-cell junctions:Happy together, Nat. Rev. Mol. Cell Biol. 5 (4) (2004) 261-270 [116] C. Michiels, Endothelial cell functions, J. Cell. Physiol. 196 (3) (2003) 430-443 [117] B.E. Sumpio, J.T. Riley, A. Dardik, Cells in focus:Endothelial cell, Int. J. Biochem. Cell Biol. 34 (12) (2002) 1508-1512 [118] T. He, J.H. He, Z.H. Wang, Z.L. Cui, Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO), Adv. Compos. Hybrid Mater. 4 (4) (2021) 847-864 [119] L. Yang, H.S. Wu, L. Lu, Q. He, B.T. Xi, H.C. Yu, R.F. Luo, Y.B. Wang, X.D. Zhang, A tailored extracellular matrix (ECM)-Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen, Biomaterials 276 (2021) 121055 [120] J.N. Mulvihill, A. Faradji, F. Oberling, J.P. Cazenave, Surface passivation by human albumin of plasmaperesis circuits reduces platelet accumulation and thrombus formation. Experimental and clinical studies, J. Biomed. Mater. Res. 24 (2) (1990) 155-163 [121] A.K. Zimmermann, N. Weber, H. Aebert, G. Ziemer, H.P. Wendel, Effect of biopassive and bioactive surface-coatings on the hemocompatibility of membrane oxygenators, J. Biomed. Mater. Res. B Appl. Biomater. 80 (2) (2007) 433-439 [122] B.H. Fang, C. Cheng, L.L. Li, J. Cheng, W.F. Zhao, C.S. Zhao, Surface modification of polyethersulfone membrane by grafting bovine serum albumin, Fibers Polym. 11 (7) (2010) 960-966 [123] C. Zhang, J. Jin, J. Zhao, W. Jiang, J.H. Yin, Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement, Colloids Surf. B Biointerfaces 102 (2013) 45-52 [124] M.J. Webber, E.A. Appel, B. Vinciguerra, A.B. Cortinas, L.S. Thapa, S. Jhunjhunwala, L. Isaacs, R. Langer, D.G. Anderson, Supramolecular PEGylation of biopharmaceuticals, Proc. Natl. Acad. Sci. USA 113 (50) (2016) 14189-14194 [125] F. Biedermann, U. Rauwald, J.M. Zayed, O.A. Scherman, A supramolecular route for reversible protein-polymer conjugation, Chem. Sci. 2 (2) (2011) 279-286 [126] M. Eick, Basic human physiology:Normal function and mechanisms of disease, Phys. Ther. 52 (3) (1972) 348-349 [127] E.E. Spaeth, Blood oxygenation in extracorporeal devices:Theoretical considerations, CRC Crit. Rev. Bioeng. 1 (4) (1973) 383-417 [128] M.E. Taskin, K.H. Fraser, T. Zhang, B.P. Griffith, Z.J. Wu, Micro-scale modeling of flow and oxygen transfer in hollow fiber membrane bundle, J. Memb. Sci. 362 (1-2) (2010) 172-183 [129] R.G. Svitek, W.J. Federspiel, A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators, Ann. Biomed. Eng. 36 (6) (2008) 992-1003 [130] S.R. Wickramasinghe, A.R. Goerke, J.D. Garcia, B. Han, Designing blood oxygenators, Ann. N.Y. Acad. Sci., 984 (2003) 502-514 [131] F. Turri, J.I. Yanagihara, Computer-assisted numerical analysis for oxygen and carbon dioxide mass transfer in blood oxygenators, Artif. Organs 35 (6) (2011) 579-592 [132] S.R. Wickramasinghe, J.D. Garcia, B.B. Han, Mass and momentum transfer in hollow fibre blood oxygenators, J. Membr. Sci. 208 (1-2) (2002) 247-256 [133] S.R. Wickramasinghe, B. Han, Designing microporous hollow fibre blood oxygenators, Chem. Eng. Res. Des., 83 (2005) 256-267 [134] Low KW, Van Loon R, Rolland SA, Sienz J, Formulation of generalized mass transfer correlations for blood oxygenator design, J. Biomech. Eng. 139 (3) (2017) 031007 2017Mar1;139(3) [135] L. di Paola, A.R. Terrinoni, F. Vitale, Extracorporeal membrane blood oxygenators:Effect of membrane wetting on gas transfer and device performance, Asia Pac. J. Chem. Eng. 7 (2012) S348-S355 [136] J.T. Zhang, T.D.C. Nolan, T. Zhang, B.P. Griffith, Z.J. Wu, Characterization of membrane blood oxygenation devices using computational fluid dynamics, J. Membr. Sci. 288 (1-2) (2007) 268-279 [137] M. Hormes, R. Borchardt, I. Mager, T. Schmitz-Rode, M. Behr, U. Steinseifer, A validated cfd model to predict O2 and Co2 transfer within hollow fiber membrane oxygenators, Int. J. Artif. Organs 34 (3) (2011) 317-325 [138] L.W. Lund, W.J. Federspiel, B.G. Hattler, Gas permeability of hollow fiber membranes in a gas-liquid system, J. Membr. Sci. 117 (1-2) (1996) 207-219 [139] H.J. Eash, H.M. Jones, B.G. Hattler, W.J. Federspiel, Evaluation of plasma resistant hollow fiber membranes for artificial lungs, ASAIO J. 50 (5) (2004) 491-497 [140] A. Kaesler, M. Rosen, T. Schmitz-Rode, U. Steinseifer, J. Arens, Computational modeling of oxygen transfer in artificial lungs, Artif. Organs 42 (8) (2018) 786-799 [141] M. Haraseka, B. Lukitscha, P. Ecker, C. Janeczek, M. Elenkov, T. Keck, B. Haddadi, C. Jordan, S. Neudl, C. Krenn, R. Ullrich, M. Gfoehler, Fully resolved computational (CFD) and experimental analysis of pressure drop and blood gas transport in a hollow fibre membrane oxygenator module, Chem. Eng. Trans., 76 (2019) 193-198 [142] C. D'Onofrio, R. van Loon, S. Rolland, R. Johnston, L. North, S. Brown, R. Phillips, J. Sienz, Three-dimensional computational model of a blood oxygenator reconstructed from micro-CT scans, Med. Eng. Phys. 47 (2017) 190-197 [143] A. Kaesler, M. Rosen, P.C. Schlanstein, G. Wagner, S. Groß-Hardt, T. Schmitz-Rode, U. Steinseifer, J. Arens, How computational modeling can help to predict gas transfer in artificial lungs early in the design process, Asaio J. 66 (6) (2020) 683-690 [144] B. Lukitsch, P. Ecker, M. Elenkov, C. Janeczek, B. Haddadi, C. Jordan, C. Krenn, R. Ullrich, M. Gfoehler, M. Harasek, Computation of global and local mass transfer in hollow fiber membrane modules, Sustainability 12 (6) (2020) 2207 [145] S. McKee, E.A. Dougall, N.J. Mottram, Analytic solutions of a simple advection-diffusion model of an oxygen transfer device, J.Math.Industry 6 (2016) 3 [146] S.P. Madhani, B.J. Frankowski, W.J. Federspiel, Fiber bundle design for an integrated wearable artificial lung, Asaio J. 63 (5) (2017) 631-636 [147] K.L. Gage, M.J. Gartner, G.W. Burgreen, W.R. Wagner, Predicting membrane oxygenator pressure drop using computational fluid dynamics, Artif. Organs 26 (7) (2002) 600-607 [148] P.W.T. Dierickx, D. de Wachter, P.R. Verdonck, Blood flow around hollow fibers, Int. J. Artif. Organs 23 (9) (2000) 610-617 [149] M.J. Gartner, C.R. Wilhelm, K.L. Gage, M.C. Fabrizio, W.R. Wagner, Modeling flow effects on thrombotic deposition in a membrane oxygenator, Artif. Organs 24 (1) (2000) 29-36 [150] J. Zhang, X. Chen, J. Ding, K.H. Fraser, M.E. Taskin, B.P. Griffith, Z.J. Wu, Computational study of the blood flow in three types of 3D hollow fiber membrane bundles, J. Biomech. Eng. 135 (12) (2013) 121009 [151] K.Y. Chan, H. Fujioka, R.H. Bartlett, R.B. Hirschl, J.B. Grotberg, Pulsatile flow and mass transport over an array of cylinders:Gas transfer in a cardiac-driven artificial lung, J. Biomech. Eng. 128 (1) (2006) 85-96 [152] A. Qamar, R. Seda, J.L. Bull, Pulsatile flow past an oscillating cylinder, Phys. Fluids (1994) 23 (4) (2011) 41903 [153] J.R. Zierenberg, H. Fujioka, R.B. Hirschl, R.H. Bartlett, J.B. Grotberg, Pulsatile blood flow and oxygen transport past a circular cylinder, J. Biomech. Eng. 129 (2) (2007) 202-215 [154] J.R. Zierenberg, H. Fujioka, K.E. Cook, J.B. Grotberg, Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung:Computational and experimental studies, J. Biomech. Eng. 130 (3) (2008) 031019 [155] A.R. Mazaheri, G. Ahmadi, Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices, Artif. Organs 30 (1) (2006) 10-15 [156] Z. Wu, J.F. Antaki, B.P. Griffith, Blood pump-oxygenator system, US Pat., US2005032675 (2007). [157] S.P. Madhani, A.G. May, B.J. Frankowski, G.W. Burgreen, W.J. Federspiel, Blood recirculation enhances oxygenation efficiency of artificial lungs, Asaio J. 66 (5) (2020) 565-570 [158] M.A. Noah, G.J. Peek, S.J. Finney, M.J. Griffiths, D.A. Harrison, R. Grieve, M.Z. Sadique, J.S. Sekhon, D.F. McAuley, R.K. Firmin, C. Harvey, J.J. Cordingley, S. Price, A. Vuylsteke, D.P. Jenkins, D.W. Noble, R. Bloomfield, T.S. Walsh, G.D. Perkins, D. Menon, B.L. Taylor, K.M. Rowan, Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1), JAMA, 306 (2011) 1659-1668 [159] G.J. Peek, M. Mugford, R. Tiruvoipati, A. Wilson, E. Allen, M.M. Thalanany, C.L. Hibbert, A. Truesdale, F. Clemens, N. Cooper, R.K. Firmin, D. Elbourne, Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR):A multicentre randomised controlled trial, Lancet 374 (9698) (2009) 1351-1363 [160] R.H. Bartlett, A.B. Gazzaniga, J. Toomasian, A.G. Coran, D. Roloff, R. Rucker, Extracorporeal membrane oxygenation (ECMO) in neonatal respiratory failure. 100 cases, Ann. Surg. 204 (3) (1986) 236-245 [161] M.S. Alshahrani, A. Sindi, F. Alshamsi, A. Al-Omari, M. El Tahan, B. Alahmadi, A. Zein, N. Khatani, F. Al-Hameed, S. Alamri, M. Abdelzaher, A. Alghamdi, F. Alfousan, A. Tash, W. Tashkandi, R. Alraddadi, K. Lewis, M. Badawee, Y.M. Arabi, E. Fan, W. Alhazzani, Extracorporeal membrane oxygenation for severe Middle East respiratory syndrome coronavirus, Ann. Intensive Care 8 (2018) 3 |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[3] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[4] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[5] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[6] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
[7] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126. |
[8] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[9] | Zhi-Guo Yuan, Yu-Xia Wang, You-Zhi Liu, Dan Wang, Wei-Zhou Jiao, Peng-Fei Liang. Research and development of advanced structured packing in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 178-186. |
[10] | Xing Su, Ning Qiao, Bao-Chang Sun. A route for the study on mass transfer enhancement by adding particles in liquid phase [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 158-165. |
[11] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[12] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[13] | Zhijie Shen, Jingchun Min. Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 497-506. |
[14] | Yihan Yin, Aoqian Qiu, Hongxia Gao, Yanqing Na, Zhiwu Liang. Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 135-142. |
[15] | Xuanyu Nie, Chunying Zhu, Taotao Fu, Youguang Ma. Mass transfer intensification and mechanism analysis of gas–liquid two-phase flow in the microchannel embedding triangular obstacles [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 100-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||