[1] L. Schlapbach, A. Züttel, Hydrogen-storage materials for Mobile applications, Nature 414(6861) (2001) 353-358. [2] Q.L. Zhu, Q. Xu, Liquid organic and inorganic chemical hydrides for highcapacity hydrogen storage, Energy Environ. Sci. 8(2) (2015) 478-512. [3] Y.T. Wang, L. Pan, Y.X. Chen, G.Q. Shen, L. Wang, X.W. Zhang, J.J. Zou, Modoped Ni-based catalyst for remarkably enhancing catalytic hydrogen evolution of hydrogen-storage materials, Int. J. Hydrogen Energy 45(31) (2020) 15560-15570. [4] S.Y. Guan, Y.Y. Liu, H.H. Zhang, R.F. Shen, H. Wen, N.X. Kang, J.J. Zhou, B.Z. Liu, Y.P. Fan, J.C. Jiang, B.J. Li, Recent advances and perspectives on supported catalysts for heterogeneous hydrogen production from ammonia borane, Adv. Sci. 10(21) (2023) 2300726. [5] M. Asim, A. Kurbanov, B. Maryam, M. Ajmal, C.X. Shi, L. Pan, J.J. Zou, Pt@Ni2P/ C3N4 for charge acceleration to promote hydrogen evolution from ammoniaborane, Int. J. Hydrogen Energy 48(65) (2023) 25423-25437. [6] Department of Energy, Hydrogen storage [OL], https://www.energy.gov/eere/ fuelcells/hydrogen-storage. (Accessed 2 August 2024). [7] U.B. Demirci, Ammonia borane: an extensively studied, though not yet implemented, hydrogen carrier, Energies 13(12) (2020) 3071. [8] K.D. Baik, J. Kim, J. Lee, H. Kang, Efficient hydrogen generation of ammonia borane by direct heat supply using a polyimide film heater, Int. J. Hydrogen Energy 51(2024) 167-171. [9] P. Veeraraghavan Ramachandran, P.D. Gagare, Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration, Inorg. Chem. 46(19) (2007) 7810-7817. [10] M. Asim, S.G. Zhang, M.H. Ai, B. Maryam, Y.T. Wang, X.D. Li, J. Yang, J.J. Zou, L. Pan, Photohydrolysis of ammonia borane for effective H2 evolution via hot electron-assisted energy Cascade of Au-WO2.72/TiO2, Ind. Eng. Chem. Res. 61(31) (2022) 11429-11435. [11] X.G. Feng, X.M. Chen, P.T. Qiu, D.P. Wu, E.J.M. Hamilton, J. Zhang, X.N. Chen, Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy 43(45) (2018) 20875-20881. [12] C.H. Liu, Y.C. Wu, C.C. Chou, B.H. Chen, C.L. Hsueh, J.R. Ku, F. Tsau, Hydrogen generated from hydrolysis of ammonia borane using cobalt and ruthenium based catalysts, Int. J. Hydrogen Energy 37(3) (2012) 2950-2959. [13] M. Chandra, Q. Xu, Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts, J. Power Sources 168(1) (2007) 135-142. [14] Y.T. Wang, G.Q. Shen, Y.X. Zhang, L. Pan, X.W. Zhang, J.J. Zou, Visible-lightinduced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane, Appl. Catal. B Environ. 260(2020) 118183. [15] H. Wu, Y.J. Cheng, Y.P. Fan, X.M. Lu, L.X. Li, B.Z. Liu, B.J. Li, S.Y. Lu, Metalcatalyzed hydrolysis of ammonia borane: mechanism, catalysts, and challenges, Int. J. Hydrogen Energy 45(55) (2020) 30325-30340. [16] K. Aranishi, H.L. Jiang, T. Akita, M. Haruta, Q. Xu, One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core-shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane, Nano Res. 4(12) (2011) 1233-1241. [17] Y.W. Yang, Z.H. Lu, X.S. Chen, Cu-based nanocatalysts for hydrogen generation via hydrolysis and methanolysis of ammonia borane, Mater. Technol. 30(sup2) (2015) A89-A93. [18] Q.L. Yao, Z.H. Lu, Y.W. Yang, Y.Z. Chen, X.S. Chen, H.L. Jiang, Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane, Nano Res. 11(8) (2018) 4412-4422. [19] H.J. Li, Z. Yao, Y.L. Zhu, X.T. Wang, The effect of solvent properties on the hydrogen producing performance of catalytic liquid phase ammonia borane, Fuel 325(2022) 124849. [20] H.Z. Li, Y.H. Li, J.X. Kang, L. Fan, Q.Y. Yang, S.J. Li, A. Rahman, D.Q. Chen, Reactivity and mechanisms of hydridic hydrogen of BeH in ammonia borane towards acetic acids: the ammonia B-monoacyloxy boranes, New J. Chem. 45(22) (2021) 9904-9911. [21] Y. Shimizu, A. Miyagi, A.K. Tripathi, T. Nakagawa, Delayed ammonia release of ammonia borane hydrolysis by citric acid, Int. J. Hydrogen Energy 82(2024) 733-739. [22] M. Chandra, Q. Xu, Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: an efficient hydrogen generation system, J. Power Sources 159(2) (2006) 855-860. [23] O. Nalan, N. Oktar, N.A. Tapan, Esteri äfication of free fatty acids in waste cooking oils (WCO): role of ion-exchange resins, Fuel 87(10-11) (2008) 1789-1798. [24] M. Banchero, G. Gozzelino, A simple pseudo-homogeneous reversible kinetic model for the esterification of different fatty acids with methanol in the presence of amberlyst-15, Energies 11(7) (2018) 1843. [25] P. Barbaro, F. Liguori, Ion exchange resins: catalyst recovery and recycle, Chem. Rev. 109(2) (2009) 515-529. [26] S.M. You, S.S. Lee, M.H. Ryu, H.M. Song, M.S. Kang, Y.J. Jung, E.C. Song, B.H. Sung, S.J. Park, J.C. Joo, H.T. Kim, H.G. Cha, b-Ketoadipic acid production from poly(ethylene terephthalate) waste via chemobiological upcycling, RSC Adv. 13(21) (2023) 14102-14109. [27] N. Boz, N. Degirmenbasi, D.M. Kalyon, Esterification and transesterification of waste cooking oil over Amberlyst 15 and modified Amberlyst 15 catalysts, Appl. Catal. B Environ. 165(2015) 723-730. [28] O. Derya Oncel, S. Tayyibe, O. G äoksel, M.S. Akkus, O. Gülay, The Hydroloysis of äammonia borane by using Amberlyst-15 supported catalysts for hydrogen generation, Int. J. Hydrogen Energy 43(23) (2018) 10765-10772. [29] L.Q. Li, C. Tang, X.Y. Cui, Y. Zheng, X.S. Wang, H.L. Xu, S. Zhang, T. Shao, K. Davey, S.Z. Qiao, Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction, Angew. Chem., Int. Ed. 60(25) (2021) 14131-14137. [30] L. Holub, K. Jer abek, Influence of partial neutralization on catalytic activity of ion exchange resin, J. Mol. Catal. Chem. 231(1-2) (2005) 21-26. [31] G.P. Rachiero, U.B. Demirci, P. Miele, Bimetallic RuCo and RuCu catalysts supported on g-Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane, Int. J. Hydrogen Energy 36(12) (2011) 7051-7065. [32] M. Hu, M. Ming, C.L. Xu, Y. Wang, Y. Zhang, D.J. Gao, J. Bi, G.Y. Fan, Towards high-efficiency hydrogen production through in situ formation of welldispersed rhodium nanoclusters, ChemSusChem 11(18) (2018) 3253-3258. [33] C.C. Chou, D.J. Lee, B.H. Chen, Hydrogen production from hydrolysis of ammonia borane with limited water supply, Int. J. Hydrogen Energy 37(20) (2012) 15681-15690. [34] J.F. Shen, L. Yang, K. Hu, W. Luo, G.Z. Cheng, Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage, Int. J. Hydrogen Energy 40(2) (2015) 1062-1070. [35] S. Akbayrak, Y. Tonbul, O. Saim, Ceria supported rhodium nanoparticles: su- äperb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane, Appl. Catal. B Environ. 198(2016) 162-170. [36] Z. Li, T. He, D. Matsumura, S. Miao, A.N. Wu, L. Liu, G.T. Wu, P. Chen, Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammoniaeborane, ACS Catal. 7(10) (2017) 6762-6769. [37] X. Zhao, Y.F. Fu, C. Yao, S.R. Xu, Y. Shen, Q. Ding, D. Wenjing Liu, P. Haibo Zhang, P. Xiaohai Zhou, From boron organic polymers to in situ ultrafine nano Pd and Pt: green synthesis and application for high efficiency hydrogen evolution, ChemCatChem 11(9) (2019) 2362-2369. [38] J.K. Zhang, W.L. Yu, D. Feng, H. Xu, Y. Qin, Porous titania nanotube confined ultrafine platinum catalysts synthesized by atomic layer deposition with enhanced hydrolytic dehydrogenation performance, Appl. Catal. B Environ. 312(2022) 121405. [39] Y.T. Li, X.L. Zhang, Z.K. Peng, P. Liu, X.C. Zheng, Hierarchical porous g-C3N4 coupled ultrafine RuNi alloys as extremely active catalysts for the hydrolytic dehydrogenation of ammonia borane, ACS Sustainable Chem. Eng. 8(22) (2020) 8458-8468. [40] J.X. Wang, B.Y. Hui, T.Y. Jia, X.Y. Chen, X.F. Yu, L.L. Li, X.H. Zhang, Z.M. Lu, X.J. Yang, PVP-Adjusted crystal surfaces of PtPd nanoparticles for enhancing the catalytic hydrolysis of ammonia borane, ACS Appl. Nano Mater. 7(8) (2024) 9490-9498. [41] Y.M. Zhu, J.H. Zhang, J. Zhang, B.L. Mao, K.S. Yao, K.X. Song, Nanosized Pd@Ag heterojunction with tunable shapes: morphological modulation for improving plasma-mediated catalytic hydrogen evolution, Fuel 361(2024) 130777. [42] Q. Xu, M. Chandra, Catalytic activities of non-noble metals for hydrogen generation from aqueous ammoniaeborane at room temperature, J. Power Sources 163(1) (2006) 364-370. [43] J.M. Chen, Z.H. Lu, Y.Q. Wang, X.S. Chen, L. Zhang, Magnetically recyclable Ag/ SiO2eCoFe2O4 nanocomposite as a highly active and reusable catalyst for H2 production, Int. J. Hydrogen Energy 40(14) (2015) 4777-4785. [44] X.N. Chen, J.C. Zhao, S.G. Shore, The roles of dihydrogen bonds in amine borane chemistry, Acc. Chem. Res. 46(11) (2013) 2666-2675. [45] C.A. Morrison, M.M. Siddick, Dihydrogen bonds in solid BH3NH3, Angew. Chem., Int. Ed. 43(36) (2004) 4780-4782. [46] J.T. Hu, Z.X. Chen, M.X. Li, X.H. Zhou, H.B. Lu, Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane, ACS Appl. Mater. Interfaces 6(15) (2014) 13191-13200. [47] S. Swinnen, V.S. Nguyen, M.T. Nguyen, Hydrogen release from ammonia borane and derivatives in the presence of a ruthenium complex incorporating cooperative PNP ligands, Chem. Phys. Lett. 513(4-6) (2011) 195-200. [48] Q.S. Nian, J.Y. Wang, S. Liu, T.J. Sun, S.B. Zheng, Y. Zhang, Z.L. Tao, J. Chen, Aqueous batteries operated at 50 C, Angew. Chem., Int. Ed. 58(47) (2019) 16994-16999. [49] X.D. Chen, X.L. Luo, X.F. Zhang, H.Z. Wang, Y.C. Li, L.F. Ye, J.H. Zheng, H. Li, Regulation of electronic structures of the urchin-like NiCoP/CoP nanocatalysts for fast hydrogen evolution, Chemistry 30(23) (2024) e202304266. [50] Q. Wang, F.Y. Fu, S. Yang, M. Martinez Moro, M. de los Angeles Ramirez, S. Moya, L. Salmon, J. Ruiz, D. Astruc, Dramatic synergy in CoPt nanocatalysts stabilized by “click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane, ACS Catal. 9(2) (2019) 1110-1119. [51] K. Wang, Y. Jing, X.R. Yin, X.M. Chen, X.N. Chen, Synthesis of aminodiborane through the reaction of ammonia borane with acids, Inorg. Chem. 63(46) (2024) 22118-22123. [52] F.H. Stephens, R. Tom Baker, M.H. Matus, D.J. Grant, D.A. Dixon, Acid initiation of ammonia-borane dehydrogenation for hydrogen storage, Angew. Chem. Int. Ed. 46(5) (2007) 746-749. [53] I.V. Fedorova, L.P. Safonova, Comparisons of NH…O and OH…O hydrogen bonds in various ethanolammonium-based protic ionic liquids, Struct. Chem. 32(5) (2021) 2061-2073. [54] L.M. Wang, Clusters of hydrated methane sulfonic acid CH3SO3H.(H2O)n (n = 15): a theoretical study, J. Phys. Chem. A 111(18) (2007) 3642-3651. [55] W.Y. Chen, D.L. Li, Z.J. Wang, G. Qian, Z.J. Sui, X.Z. Duan, X.G. Zhou, I. Yeboah, D. Chen, Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst, AIChEJ. 63(1) (2017) 60-65. [56] P. Hodge, Polymer-supported organic reactions: what takes place in the beads? Chem. Soc. Rev. 26(6) (1997) 417. |