1 Zheng, J., Xu, M., Lu, X., Lin, C., “Measurement and correlation of solubilities of C.I. Disperse Red 73, C.I. Disperse Blue 183 and their mixture in supercritical carbon dioxide”, Chin. J. Chem. Eng., 18 (4), 648-653 (2010).2 Coimbra, P., Duarte, C.M.M., Sousa, H.C.de, “Cubic equation-of-state correlation of the solubility of some anti-inflammatory drugs in supercritical carbon dioxide”, Fluid Phase Equilibr., 239, 188-199 (2006).3 Luo, N., Lu, Y., Jiang, Y., “Solubility of paclitaxel in mixtures of dichloromethane and supercritical carbon dioxide”, Chin. J. Chem. Eng., 19 (4), 558-564 (2011).4 Jha, S.K., Madras, G., “Modeling the solubilities of high molecular weight n-alkanes in supercritical carbon dioxide”, Fluid Phase Equilibr., 225, 59-62 (2004).5 Yazdizadeh, M., Eslamimanesh, A., Esmaeilzadeh, F., “Thermodynamic modeling of solubilities of various solid compounds in supercritical carbon dioxide: Effects of equations of state and mixing rules”, J. Supercrit. Fluid, 55, 861-875 (2011).6 Mackay, M.E., Paulaitis, M.E., “Solid solubilities of heavy hydrocarbons in supercritical solvents”, Ind. Eng. Chem. Fundam., 18, 149-153 (1979).7 Madras, G., Kulkarni, C., Modak, J., “Modeling the solubilities of fatty acids in supercritical carbon dioxide”, Fluid Phase Equilibrs., 209, 207-213 (2003).8 Johnston, K. P., Peck, D. G., “Modeling supercritical mixtures: how predictive is it?”, Ind. Eng. Chem. Res., 28, 1115-1125 (1989).9 Ruckenstein, E., Shulgin, I., “Cubic equation of state and local composition mixing rules: correlations and predictions. Application to the solubility of solids in supercritical solvents”, Ind. Eng. Chem. Res., 40, 2544-2549 (2001). 10 Raghuram, M.M., Rao, G.V., “Thermodynamic modeling for supercritical fluid process design”, Ind. Eng. Chem. Res., 32, 922-930 (1993). 11 Esmaeilzadeh, F., As'adi, H., Lashkarbolooki, M., “Calculation of the solid solubilities in supercritical carbon dioxide using a new Gex mixing rule”, J. Supercrit. Fluid, 51, 148-158 (2009). 12 Coutsikos, P., Magoulas, K., Kontogeorgis, G.M., “Prediction of solid-gas equilibria with the Peng-Robinson equation of state”, J. Supercrit. Fluid, 25, 197-212 (2003). 13 Johnston, K. P., Eckert, C. A., “An analytical Carnahan-Starling-van der Waals model for solubility of hydrocarbon solids in supercritical fluids”, AIChE J., 27, 773-779 (1981). 14 Li, H., Li, S., Shen, B., “Correlation and prediction of the solubilities of solid n-alkanes in supercritical carbon dioxide using the Carnahan-Starling-van der Waals model with a density-dependent parameter”, Fluid Phase Equilibr., 325, 28-34 (2012). 15 Bücker, D., Wagner, W., “A reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa”, J. Phys. Chem. Ref. Data, 35, 205-266 (2006). 16 Bondi, A., “van der Waals volumes and radii”, J. Phys. Chem., 68, 441-451 (1964). 17 Pouillot, F.L.L., Chandler, K., Eckert, C.A., “Sublimation pressures of n-alkanes from C20H42 to C35H72 in the temperature range 308-348 K”, Ind. Eng. Chem. Res., 35, 2408-2413 (1996). 18 Poling, B.E., Prausnitz, J.M., O'Connell, J.P., The Properties of Gases and Liquids, 5th edition, McGraw-Hill, New York (2001). 19 Lide, D.R., Haynes, W.M., CRC Handbook of Chemistry and Physics, 90th edition, CRC Press, Boca Raton, Florida (2009). 20 Suleiman, D., Eckert, C. A., “Phase equilibria of alkanes in natural gas systems. 2. alkanes in ethane”, J. Chem. Eng. Data, 40, 572-577 (1995). 21 Kalaga, A., Trebble, M., “Solubilities of tetracosane, octacosane, and dotriacontane in supercritical ethane”, J. Chem. Eng. Data, 42, 368-370 (1997). 22 Moradinia, I., Teja, A.S., “Solubilities of five solid n-alkanes in supercritical ethane”, In: Supercritical Fluids, ACS Symposium Series, American Chemical Society: Washington, DC (1987). |