1 Kakaras, E., Koumanakos, A., Doukelis, A., Glannakopoulos, D., Vorrias, I., "Oxyfuel boiler design in a lignite-fired power plant", Fuel, 86 (14), 2144-2150 (2007). 2 Shah, M.M., "Oxy-fuel combustion for CO2 capture from PC boilers", In: 31st Intl. Conf. Coal Utilization Fuel System, Coal Technologies Associates, USA, No.3 (2006).3 Zhang, H., Yue, G.X., Lü, J.F., Zhen, J., Mao, J.X., Fujimori, T., Suko, T., Kiga, T., "Development of high temperature air combustion technology in pulverized fossil fuel fired boilers", Proc. Combust. Inst., 31, 2779-2785 (2007).4 Mao, J., Jia, X., Zhang, H., Yue, G.X., Fujimori, T., Suko, T., Kiga, T., "Reducing NOx Emission with PRP Burner for Anthracite fired Boilers", In: 31st Intl. Technical Conf. on Clean Coal & Fuel Systems, Coal Technologies Associates, USA, No. 21 (2006).5 Cui, K., Zhang, H., Wang, W.L., Wu, Y.X., Yang, H.R., Lü, J.F., "Comparison between realizable κ-ε and RSM model in the simulation for a swirl burner", J. Eng. Thermophys., 33 (11), 2006-2009 (2012). (in Chinese)6 Cheng, P., "Two-dimensional radiating gas flow by a moment me-thod", AIAA J., 2, 1662-1664 (1964).7 Siegel, R., Howell, J.R., Thermal Radiation Heat Transfer, Hemis-phere Publishing Corporation, Washington, DC (1992).8 Chui, E.H., Raithby, G.D., "Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method", Heat Transfer B, 23, 269–288 (1993).9 Raithby, G.D., Chui, E.H., "A finite-volume method for predicting a radiant heat transfer in enclosures with participating media", Heat Transfer, 112, 415-423 (1990).10 Modest, M.F., Radiative Heat Transfer, 2nd edition, Academic Press, London (2003).11 Yang, B., Pope, S.B., "An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry", Combust. Flame, 112, 16-32 (1998).12 Byggstoyl, S., Magnussen, B.F., "A model for flame extinction in turbulent low", Proc. Intl. Symp. Turbulent Shear Flows, 14 (10), 32-38 (1983).13 Gran, I.R., Melaaen, M.C., Magnussen, B.F., "Numerical simulation of local extinction effects in turbulent combustor flows of methane and air", Proc. Combust. Inst., 25, 1283-1291 (1994).14 Magnussen, B.F., Hjertager, B.H., "On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion", Proc. Combust. Inst., 16, 719-729 (1976).15 Ertesvag, I.S., Magnussen, B.F., "The eddy dissipation turbulence energy cascade model", Combust. Sci. Tech., 159, 213-235 (2000).16 Magnussen, B.F., "An investigation into the behavior of soot in a turbulent free jet C2H2 flame", Proc. Combust. Inst., 15 (1), 1415-1425 (1975).17 Crowe, C.T., Sharma, M.P., Stock, D.E., "The particle-source-in cell (PSI-CELL) model for gas-droplet flows", J. Fluid Eng., 6, 325-332 (1977).18 Zhang, J.X., "Turbulent diffusion combustion numerical simulation linking EDC combustion model with chemical kinetics reaction me-chanism", Ind. Furnace, 29 (1), 41-44 (2007). (in Chinese)19 Mi, J.C., Li, P.F., Zheng, C.G., "Numerical simulation of flameless premixed combustion with an annular nozzle in a recuperative furnace", Chin. J. Chem. Eng., 18 (1), 10-17 (2010).20 Pope, S.B., "Computationally efficient implementation of combus-tion chemistry using in situ adaptive tabulation", Combust. Theory Model., 1, 41-63 (1997). 21 Das, T.K., "Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals", Fuel, 80, 489-500 (2001).22 Fuller, J.E., Coal and Coal Products: Analytical Characterization Techniques, American Chemical Society, Washington, DC (1982).23 Elliott, M.A., Chemistry of Coal Utilization, Wiley, New York (1981).24 Howard, J.B., "Fundamentals of coal pyrolysis and hydropyrolysis", In: Chemistry of Coal Utilization, Elliott, M.A., ed., Willey, New York (1981).25 Solomon, P.R., Fletcher, T.H., Pugmire, P.J., "Progress in coal pyrolysis", Fuel, 72, 587-597 (1993).26 Solomon, P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A., Deshpande, G.V., "General model of coal devolatilization", Energy Fuels, 2 (4), 405-422 (1988). 27 Niksa, S., Kerstein, A.R., "The distributed-energy chain model for rapid coal devolatilization kinetics, I: Formulation", Combust. Flame, 66, 95-109 (1986).28 Niksa, S., "The distributed-energy chain model for rapid coal devo-latilization kinetics, II: Transient weight loss correlations", Combust. Flame, 66, 111-119 (1986).29 Niksa, S., Kerstein, A.R., "On the role of macromolecular configura-tion in rapid coal devolatilization", Fuel, 66, 1389-1399 (1986).30 Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Solum, M., Grant, D.M., "Chemical percolation model for devolatilization. 3. Direct use of carbon-13 NMR data to predict effects of coal type", Energy Fuel, 6, 414-431 (1992).31 Kobayashi, H., Howard, J.B., Sarofim, A.F., "Coal devolatilization at high temperatures", Proc. Combust. Inst., 16, 411-425 (1977). 32 Baum, M.M., Street, P.J., "Predicting the combustion behavior of coal particles", Combust. Sci. Tech., 3 (5), 231-243 (1971). 33 Bowman, C.T., "Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation", Proc. Combust. Inst., 24, 859-878 (1992).34 Xieu, D.V., Masuda, T., Cogoli, J. G., Essenhigh, R.H., "A mathe-matic model of a char flame: A comparison between theory and ex-periment", Proc. Combust. Inst., 22, 1461-1468 (1984). |