[1] C.L. Peng, J. Huang, S. Hu, W.R. Zhao, S.J. Yao, L.H. Mei, A two-stage pH and temperature control with substrate feeding strategy for production of Gammaaminobutyric acid by Lactobacillus brevis CGMCC 1306, Chin. J. Chem. Eng. 21 (2013) 1190-1194. [2] T.M. Lammens, D. De Biase, M.C.R. Franssen, E.L. Scott, J.P.M. Sanders, The application of glutamic acid α-decarboxylase for the valorization of glutamic acid, Green Chem. 11 (2009) 1562-1567. [3] H.W. Kim, Y. Kashima, K. Ishikawa, N. Yamano, Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii, Biosci. Biotechnol. Biochem. 73 (2009) 224-227. [4] J.J. Soghomoniana, D.L. Martin, Two isoforms of glutamate decarboxylase: why? Trends Pharmacol. Sci. 19 (1998) 500-505. [5] J.H. Lee, Y.J. Kim, D.Y. Jeong, G. Sathiyaraj, R.K. Pulla, J.S. Shim, J.G. In, D.C. Yang, Isolation and characterization of a Glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C. A. Meyer, Mol. Biol. Rep. 37 (2010) 3455-3463. [6] H. Gut, P. Dominici, S. Pilati, A. Astegno, M.V. Petoukhov, D.I. Svergun, M.G. Grütter, G. Capitani, A common structural basis for pH-and calmodulin-mediated regulation in plant glutamate decarboxylase, J. Mol. Biol. 392 (2009) 334-351. [7] Z. Ma, S. Gong, H. Richard, D.L. Tucker, T. Conway, J.W. Foster, GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12, Mol. Microbiol. 49 (2003) 1309-1320. [8] H. Gut, E. Pennacchietti, R.A. John, F. Bossa, G. Capitani, D.D. Biase, M.G. Grütter, Escherichia coli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB, EMBO J. 25 (2006) 2643-2651. [9] P.D. Cotter, C.G.M. Gahan, C. Hill, A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid, Mol. Microbiol. 40 (2001) 465-475. [10] K. Hiraga, Y. Ueno, K. Oda, Glutamate decarboxylase fromLactobacillus brevis: activation by ammonium sulfate, Biosci. Biotechnol. Biochem. 72 (2008) 1299-1306. [11] X.X. Lu, Z.G. Chen, Z.X. Gu, Y.B. Han, Isolation of gamma-aminobutyric acidproducing bacteria and optimization of fermentative medium, Biochem. Eng. J. 41 (2008) 48-52. [12] G. Capitani, D.D. Biase, C. Aurizi, H. Gut, F. Bossa, M.G. Grütter, Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase, EMBO J. 22 (2003) 4027-4037. [13] D. Dutyshev, E. Darii, N. Fomenkova, I. Pechik, K. Polyakov, S. Nikonov, N. Andreeva, B. Sukhareva, Structure of Escherichia coli glutamate decarboxylase (GAD) in complex with glutarate at 2.05 A resolution, Acta Crystallogr. Sect. D: Biol. Crystallogr. 61 (2005) 230-235. [14] Y. Ueno, K. Hayakawa, S. Takahashi, K. Oda, Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005, Biosci. Biotechnol. Biochem. 61 (1997) 1168-1171. [15] J. Huang, L.H. Mei, Q. Sheng, S.J. Yao, D.Q. Lin, Purification and characterization of glutamate decarboxylase of Lactobacillus brevis CGMCC 1306 isolated from fresh milk, Chin. J. Chem. Eng. 15 (2007) 157-161. [16] K.B. Park, S.H. Oh, Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3, Bioresour. Technol. 98 (2007) 312-319. [17] N. Komatsuzaki, T. Nakamura, T. Kimura, J. Shima, Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei, Biosci. Biotechnol. Biochem. 72 (2008) 278-285. [18] K. Oda, K. Hiraga, Concurrent Session A: Prof. Kohei Oda, The 12th Asean Food Conference 2011, 2011, pp. 17-28. [19] N.A.T. Ho, C.Y. Hou,W.H. Kim, T.J. Kang, Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness, J. Biosci. Bioeng. 115 (2012) 154-158. [20] E. Pennacchietti, T.M. Lammens, G. Capitani, M.C.R. Franssen, R.A. John, F. Bossa, D.D. Biase, Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH, J. Biol. Chem. 284 (2009) 31587-31596. [21] K. Yu, L. Lin, S. Hu, J. Huang, L.H. Mei, C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH, Enzym. Microb. Technol. 50 (2012) 262-269. [22] E.Y. Fan, J. Huang, S. Hu, K. Yu, L.H. Mei, Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306, Ann. Microbiol. 62 (2012) 689-698. [23] J. Huang, L.H.Mei, Q. Sheng, J. Xu, H.Wu, Optimization of γ-aminobutyric acid liquid fermentation conditions and fed-batch fermentation (in Chinese), J. Chem. Eng. Chin. Univ. 22 (2008) 618-623. [24] K. Yu, S. Hu, J. Huang, L.H. Mei, A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase, Enzym. Microb. Technol. 49 (2012) 272-276. [25] R.A. Chical, N. Doucet, J.N. Pelletier, Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design, Curr. Opin. Biotechnol. 16 (2005) 378-384. [26] P.A. Dalby, Strategy and success for the directed evolution of enzymes, Curr. Opin. Struct. Biol. 21 (2011) 473-480. [27] B.M. Parker, I.N. Taylor, J.M. Woodley, J.M. Ward, P.A. Dalby, Directed evolution of a thermostable L-aminoacylase biocatalyst, J. Biotechnol. 155 (2011) 396-405. [28] A.R. Martina, R. DiSanto, I. Plotnikov, S. Kamat, D. Shonnard, S. Pannuri, Improved activity and thermostability of (S)-aminotransferase by error-prone polymerase chain reaction for the production of a chiral amine, Biochem. Eng. J. 37 (2007) 246-255. [29] A.E. Firth, W.M. Patrick, GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries, Nucleic Acids Res. 36 (2008)W281-W285. [30] G. Capitani, A. Tramonti, F. Bossa, M.G. Grutter, D.D. Biase, The critical structural role of a highly conserved histidine residue in group II amino acid decarboxylases, FEBS Lett. 554 (2003) 41-44. [31] F. Fraternali, P. Amodeo, G. Musco, M. Nilges, A. Pastore, Exploring protein interiors: the role of a buried histidine in the KHmodule fold, Proteins Struct. Funct. Bioinforma. 34 (1999) 484-496. |