[1] H. Chen, S. Wang, M. Xiao, Y. Lu, Y. Meng, Direct synthesis of dimethyl carbonate from CO2 and CH2OH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst, Chin. J. Chem. Eng. 20 (5) (2012) 906-913. [2] M. Wang, Y. She, X. Zhou, H. Ji, Efficient solvent-free synthesis of chloropropene carbonate from the coupling reaction of CO2 and epichlorohydrin catalyzed by magnesium porphyrins as chlorophyll-like catalysts, Chin. J. Chem. Eng. 19 (3) (2011) 446-451. [3] K.Motokura, D. Kashiwame, A.Miyaji, T. Baba, Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O, Org. Lett. 14 (10) (2012) 2642-2645. [4] B.A. Parkinson, P.F.Weaver, Photoelectrochemical pumping of enzymatic CO2 reduction, Nature 309 (5964) (1984) 148-149. [5] Y.M. Yu, Y.P. Zhang, J.H. Fei, X.M. Zheng, Silica immobilized ruthenium catalyst for formic acid synthesis from supercritical carbon dioxide hydrogenation II: effect of reaction conditions on the catalyst performance, Chin. J. Chem. 23 (8) (2005) 977-982. [6] A.V. Lobanov, S.N. Kholuiskaya, G.G. Komissarov, Photocatalytic synthesis of formaldehyde from CO2 and H2O2, Dokl. Phys. Chem. 399 (1-3) (2004) 266-268. [7] D.K. Lee, D.S. Kim, S.W. Kim, Selective formation of formaldehyde from carbon dioxide and hydrogen over PtCu/SiO2, Appl. Organomet. Chem. 15 (2) (2001) 148-150. [8] L.X. Zhang, Y.C. Zhang, S.Y. Chen, Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation, Appl. Catal. A 415 (2012) 118-123. [9] S.W. Park, O.S. Joo, K.D. Jung, H. Kim, S.H. Han, Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process, Appl. Catal. A 211 (1) (2001) 81-90. [10] A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Methanation of CO2: further insight into the mechanism over Rh/gamma-Al2O3 catalyst, Appl. Catal. B 113 (2012) 2-10. [11] D. Theleritis, S. Souentie, A. Siokou, A. Katsaounis, C.G. Vayenas, Hydrogenation of CO2 over Ru/YSZ electropromoted catalysts, ACS Catal. 2 (5) (2012) 770-780. [12] J. Qu, X. Zhang, Y. Wang, C. Xie, Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode, Electrochim. Acta 50 (16-17) (2005) 3576-3580. [13] J.P. Popic,M.L. Avramov-Ivic, N.B. Vukovic, Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5MNaHCO3, J. Electroanal. Chem. 421 (1-2) (1997) 105-110. [14] M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity, Appl. Catal. B 23 (2-3) (1999) 169-174. [15] D. Mandler, I.Willner, Photochemical fixation of carbon dioxide: enzymic photosynthesis of malic, aspartic, isocitric, and formic acids in artificial media, J. Chem. Soc. Perkin Trans. 2 (6) (1988) 997-1003. [16] S. Kuwabata, R. Tsuda, H. Yoneyama, Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts, J. Am. Chem. Soc. 116 (12) (1994) 5437-5443. [17] R. Obert, B.C. Dave, Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices, J. Am. Chem. Soc. 121 (51) (1999) 12192-12193. [18] Z.Y. Jiang, H. Wu, S.W. Xu, S.F. Huang, Q. Xie, Preliminary study on enzymatic conversion of carbon dioxide to methanol by sol-gel encapsulation, Chin. J. Catal. 23 (2) (2002) 162-164. [19] Q. Sun, Y. Jiang, Z. Jiang, L. Zhang, X. Sun, J. Li, Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated titania, Ind. Eng. Chem. Res. 48 (9) (2009) 4210-4215. [20] B. El-Zahab, D. Donnelly, P. Wang, Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes, Biotechnol. Bioeng. 99 (3) (2008) 508-514. [21] F. Baskaya, X. Zhao, M. Flickinger, P.Wang, Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol, Appl. Biochem. Biotechnol. 162 (2) (2010) 391-398. [22] P.K. Addo, R.L. Arechederra, A. Waheed, J.D. Shoemaker, W.S. Sly, S.D. Minteer, Methanol production via bioelectrocatalytic reduction of carbon dioxide: role of carbonic anhydrase in improving electrode performance, Electrochem. Solid-State Lett. 14 (4) (2011) E9-E13. [23] Y. Lu, Z.Y. Jiang, S.W. Xu, H.Wu, Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate-silica hybrid gel, Catal. Today 115 (1-4) (2006) 263-268. [24] M. Yoshimoto, T. Yamashita, T. Yamashiro, Stability and reactivity of liposomeencapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow, Biotechnol. Progr. 26 (4) (2010) 1047-1053. [25] W.F. Liu, B.X. Hou, Y.H. Hou, Z.P. Zhao, Synthesis of formic acid from CO2 catalyzed by formate dehydrogenase immobilized on hollow fiber membrane, Chin. J. Catal. 33 (4) (2012) 730-735. [26] N. Wen, W.F. Liu, Y.H. Hou, Z.P. Zhao, The kinetics behavior of the reduction of formaldehyde catalyzed by alcohol dehydrogenase (ADH) and partial uncompetitive substrate inhibition by NADH, Appl. Biochem. Biotechnol. 170 (2013) 370-380. [27] C.U. Galdiga, T. Greibrokk, Ultra trace determination of fluorinated aromatic carboxylic acids in aqueous reservoir fluids by solid phase extraction in combination with negative ion chemical ionisation mass spectrometry after derivatisation with pentafluorobenzyl bromide, Fresenius J. Anal. Chem. 361 (1998) 797-802. [28] S. Uchiyama, E.Matsushima, S. Aoyagi,M. Ando, Simultaneous determination of C1-C4 carboxylic acids and aldehydes using 2,4-dinitrophenylhydrazine-impregnated silica gel and high-performance liquid chromatography, Anal. Chem. 76 (19) (2004) 5849-5854. |