[1] Z.C. Zhu, Y. Chen, Q.M. Jin, D.H. Huang, Study on high-speed centrifugal-regenerative pump with an inducer, Chin. J. Chem. Eng. 10 (2) (2002) 137-141.[2] B.L. Cui, Z.C. Zhu, J.C. Zhang, Y. Chen, The flow simulation and experimental study of low-specific-speed high-speed complex centrifugal impellers, Chin. J. Chem. Eng. 14 (4) (2006) 435-441.[3] Z.C. Zhu, P. Xie, G.F. Ou, B.L. Cui, Y. Li, Design and experimental analyses of smallflow high-head centrifugal-vortex pump for gas-liquid two-phase mixture, Chin. J. Chem. Eng. 16 (4) (2008) 528-534.[4] W. Yang, R. Xiao, F. Wang, Y. Wu, Influence of splitter blades on the cavitation performance of a double suction centrifugal pump, Adv. Mech. Eng. (2014) (ID 963197).[5] B.L. Cui, Y.G. Lin, Y.Z. Jin, Numerical simulation of flow in centrifugal pump with complex impeller, J. Therm. Sci. 20 (1) (2011) 47-52.[6] S.Q. Yuan, J.F. Zhang, Y. Tang, J.P. Yuan, Y.D. Fu, Research on the design method of the centrifugal pump with splitter blades, Proceedings of the ASME Fluids Engineering Division Summer Conference, vol. 1 2009, pp. 107-120.[7] G. Kergourlay, M. Younsi, F. Bakir, R. Rey, Influence of splitter blades on the flow field of a centrifugal pump: test-analysis comparison, Int. J. Rotating Mach. (2007) (ID 85024).[8] Q. Thai, C. Lee, The cavitation behaviorwith short length blades in centrifugal pump, J. Mech. Sci. Technol. 24 (10) (2010) 2007-2016.[9] T. Shigemitsu, J. Fukutomi, K. Kaji, T. Wada, Unsteady internal flow conditions of mini-centrifugal pump with splitter blades, J. Therm. Sci. 22 (1) (2013) 86-91.[10] L.T. Ye, S.Q. Yuan, J.F. Zhang, Y. Yuan, Effects of splitter blades on the unsteady flow of a centrifugal pump, Proceedings of the ASME Fluids Engineering Division Summer Meeting, vol. 1 2012, pp. 435-441.[11] J.H. Yang, S.C. Miao, Numerical simulation and orthogonal design method research effect of splitter blade's main geometry factors on the performance of pump as turbine, Appl. Mech. Mater. 456 (2014) 100-105.[12] K. Yamada, Y. Tamagawa, H. Fukushima,M. Furukawa, S. Ibaraki, K. Iwakiri, Comparative study on tip clearance flow fields in two types of transonic centrifugal compressor impeller with splitter blades, Proceedings of the ASME Turbo Expo, vol. 7 2010, pp. 2053-2063.[13] M. Solis, F. Bakir, S. Khelladi, Pressure fluctuations reduction in centrifugal pumps: influence of impeller geometry and radial gap, Proceedings of the ASME Fluids Engineering Division Summer Conference, vol. 1 2009, pp. 253-265.[14] M. Golcu, Artificial neural network basedmodeling of performance characteristics of deep well pumps with splitter blade, Energy Convers. Manag. 47 (18-19) (2006) 3333-3343.[15] S.S. Yang, F.Y. Kong, J.H. Fu, L. Xue, Numerical research on effects of splitter blades to the influence of pump as turbine, Int. J. Rotating Machinery (2012) (ID 123093).[16] C.M. Jang, K.R. Choi, Optimal design of splitters attached to turbo blower impeller by RSM, J. Therm. Sci. 21 (3) (2012) 215-222.[17] J. Zhao, Z.M. Gao, Y.Y. Bao, Effects of the blade shape on the trailing vortices in liquid flow generated by disc turbines, Chin. J. Chem. Eng. 19 (2) (2011) 232-242.[18] J.Min, Z.M. Gao, L.T. Shi, CFD simulation ofmixing in a stirred tankwithmultiple hydrofoil impellers, Chin. J. Chem. Eng. 13 (5) (2005) 583-588.[19] F. Bakir, S. Kouidri, R. Noguera, R. Rey, Experimental analysis of an axial inducer influence of the shape of the blade leading edge on the performances in cavitating regime, ASME J. Fluids Eng. 125 (2) (2003) 293-301.[20] H. Horiguchi, Y. Semenov, M. Nakano, Y. Tsujimoto, Linear stability analysis of the effects of camber and blade thickness on cavitation instabilities in inducers, ASME J. Fluids Eng. 128 (3) (2006) 430-438.[21] Y. Yoshida, M. Eguchi, T. Motomura, M. Uchiumi, H. Kure, Y. Maruta, Rotor dynamic forces acting on three-bladed inducer under supersynchronous/synchronous rotating cavitation, ASME J. Fluids Eng. 132 (6) (2010) (ID061105).[22] S. Kim, C. Choi, J. Kim, J. Park, J. Baek, Tip clearance effects on cavitation evolution and head breakdown in turbopump inducer, J. Propuls. Power 29 (6) (2013) 1357-1366.[23] O. Coutier-Delgosha, G. Caignaert, G. Bois, J. Leroux, Influence of the blade number on inducer cavitating behavior, ASME J. Fluids Eng. 134 (8) (2012) (ID081304).[24] B. Ji, X.W. Luo, Y.L.Wu, X.X. Peng, Y.L. Duan, Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil, Int. J. Multiphase Flow 51 (2013) 33-43.[25] B. Ji, X.W. Luo, R.E.A. Arndt, Y.L.Wu, Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction, Ocean Eng. 87 (2014) 64-77.[26] T. Kimura, Y. Yoshida, T. Hashimoto, M. Shimagaki, Numerical simulation for vortex structure in a turbopump inducer: Close relationship with appearance of cavitation instabilities, ASME J. Fluids Eng. 130 (5) (2008) (ID051104).[27] J.C. Zhang, X.M. Wu, The experimental study of improving the performance of centrifugal pumps, Proceedings of the Seventh International Conference on Fluid Power Transmission and Control 2009, pp. 663-666.[28] K. Lee, J. Yoo, S. Kang, Experiments on cavitation instability of a two-bladed turbopump inducer, J. Mech. Sci. Technol. 23 (9) (2009) 2350-2356.[29] B. Pouffary, R.F. Patella, J.L. Reboud, P.A. Lambert, Numerical analysis of cavitation instabilities in inducer blade cascade, ASME J. Fluids Eng. 130 (4) (2008) (ID 041302).[30] X.F. Guan, Modern Pumps Theory and Design, China Astronautic Publishing House, Beijing, 2011. (in Chinese). |