[1] J.A. Posada, L.E. Rincon, C.A. Cardona, Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem, Bioresour. Technol. 111 (2012) 282-293.[2] M. Ayoub, A.Z. Abdullah, Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry, Renew. Sust. Energ. Rev. 16 (2012) 2671-2686.[3] C.A.G. Quispe, C.J.R. Coronado, J.A. Carvalho, Glycerol: Production, consumption, prices, characterization and new trends in combustion, Renew. Sust. Energ. Rev. 27 (2013) 475-493.[4] H.W. Tan, A.R. Abdul Aziz, M.K. Aroua, Glycerol production and its applications as a raw material: A review, Renew. Sust. Energ. Rev. 27 (2013) 118-127.[5] OECD FAO Agricultural Outlook 2011-2020, 2012[6] S. Prieler, G. Fischer, Agricultural by-products associated with biofuel production chains, In: Assessment of Biofuel Policy Impacts in Food and Feed Markets (Ed.), Report D5.1 of ELOBIO WP5 2009, pp. 1-9.[7] B. Katryniok, S. Paul, M. Capron, F. Dumeignil, Towards the sustainable production of acrolein by glycerol dehydration, ChemSusChem 2 (2009) 719-730.[8] B. Katryniok, S. Paul, F. Dumeignil, Recent developments in the field of catalytic dehydration of glycerol to acrolein, ACS Catal. 3 (2013) 1819-1834.[9] A. Corma, G.W. Huber, L. Sauvanaud, P. O'Connor, Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network, J. Catal. 257 (2008) 163-171.[10] B. Rafii Sereshki, S.J. Balan, G.S. Patience, J.L. Dubois, Reactive vaporization of crude glycerol in a fluidized bed reactor, Ind. Eng. Chem. Res. 49 (2010) 1050-1056.[11] Y. Moro-Oka, W. Ueda, Multicomponent bismuth molybdate catalyst: A highly functionalized catalyst system for the selective oxidation of olefin, Adv. Catal. 40 (1994) 233-273.[12] T. Ono, K. Utsumi,M. Kataoka, Y. Tanaka, F. Noguchi, A study of active sites for partial oxidation on α-Bi2Mo3O12 and β-Bi2Mo2O9 catalysts using crystal structure visualization, Catal. Today 91-92 (2004) 181-184.[13] L. Ott, M. Bicker, H. Vogel, Catalytic dehydration of glycerol in sub-and supercritical water: A new chemical process for acrolein production, Green Chem. 8 (2006) 214-220.[14] Y.T. Kim, K.D. Jung, E.D. Park, A comparative study for gas-phase dehydration of glycerol over H-zeolites, Appl. Catal. A Gen. 393 (2011) 275-287.[15] Y. Gu, N. Cui, Q. Yu, C. Li, Q. Cui, Study on the influence of channel structure properties in the dehydration of glycerol to acrolein over H-zeolite catalysts, Appl. Catal. A Gen. 429-430 (2012) 9-16.[16] Y.T. Kim, K.D. Jung, E.D. Park, Gas-phase dehydration of glycerol over supported silicotungstic acids catalysts, Bull. Kor. Chem. Soc. 31 (2010) 3283-3290.[17] L. Shen, Y. Feng, H. Yin, A.Wang, L. Yu, T. Jiang, Y. Shen, Z. Wu, Gas phase dehydration of glycerol catalyzed by rutile TiO2-supported heteropolyacids, J. Ind. Eng. Chem. 17 (2011) 484-492.[18] L.Z. Tao, S.H. Chai, Y. Zuo, W.T. Zheng, Y. Liang, B.Q. Xu, Sustainable production of acrolein: Acidic binary metal oxide catalysts for gas-phase dehydration of glycerol, Catal. Today 158 (2010) 310-316.[19] A. Ulgen,W.F. Hoelderich, Conversion of glycerol to acrolein in the presence ofWO3/TiO2 catalysts, Appl. Catal. A Gen. 400 (2011) 34-38.[20] A. Ulgen,W.F. Hoelderich, Conversion of glycerol to acrolein in the presence ofWO3/ZrO2 catalysts, Catal. Lett. 131 (2009) 122-128.[21] S.H. Chai, H.P.Wang, Y. Liang, B.Q. Xu, Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb2O5 catalyst, J. Catal. 250 (2007) 342-349.[22] N.R. Shiju, D.R. Brown, K. Wilson, G. Rothenberg, Glycerol valorization: dehydration to acrolein over silica-supported niobia catalysts, Top. Catal. 53 (2010) 1217-1223.[23] M. Massa, A. Andersson, E. Finocchio, G. Busca, Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb-and W-oxide catalysts, J. Catal. 307 (2013) 170-184.[24] L.Z. Tao, B. Yan, Y. Liang, B.Q. Xu, Sustainable production of acrolein: Catalytic performance of hydrated tantalum oxides for gas-phase dehydration of glycerol, Green Chem. 15 (2013) 696-705.[25] W. Suprun, M. Lutecki, H. Papp, TPD-TG-MS Investigations of the catalytic conversion of glycerol over MOx-Al2O3-PO4 catalysts, Chem. Eng. Technol. 34 (2011) 134-139.[26] W. Suprun, M. Lutecki, R. Gläser, H. Papp, Catalytic activity of bifunctional transition metal oxide containing phosphated alumina catalysts in the dehydration of glycerol, J. Mol. Catal. A Chem. 342-343 (2011) 91-100.[27] Q. Liu, Z. Zhang, Y. Du, J. Li, X. Yang, Rare earth pyrophosphates: Effective catalysts for the production of acrolein from vapor-phase dehydration of glycerol, Catal. Lett. 127 (2009) 419-428.[28] H. Gan, X. Zhao, B. Song, L. Guo, R. Zhang, C. Chen, J. Chen,W. Zhu, Z. Hou, Gas phase dehydration of glycerol to acrolein catalyzed by zirconium phosphate, Chin. J. Catal. 35 (2014) 1148-1156.[29] M.K. Munshi, S.T. Lomate, R.M. Deshpande, V.H. Rane, A.A. Kelkar, Synthesis of acrolein by gas-phase dehydration of glycerol over silica supported Bronsted acidic ionic liquid catalysts, J. Chem. Technol. Biotechnol. 85 (2010) 1319-1324.[30] Y.T. Kim, K.-D. Jung, E.D. Park, Gas-phase dehydration of glycerol over ZSM-5 catalysts, Microporous Mesoporous Mater. 131 (2010) 28-36.[31] E. Tsukuda, S. Sato, R. Takahashi, T. Sodesawa, Production of acrolein from glycerol over silica supported heteropoly acids, Catal. Commun. 8 (2007) 1349-1353.[32] H. Atia, U. Armbruster, A. Martin, Influence of alkaline metal on performance of supported silicotungstic acid catalysts in glycerol dehydration towards acrolein, Appl. Catal. A Gen. 393 (2011) 331-339.[33] M.H. Haider, N.F. Dummer, D. Zhang, P. Miedziak, T.E. Davies, S.H. Taylor, D.J. Willock, D.W. Knight, D. Chadwick, G.J. Hutchings, Rubidium-and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein, J. Catal. 286 (2012) 206-213.[34] M.W. Tamele, Chemistry of the surface and the activity of alumina-silica cracking catalyst, Discuss. Faraday Soc. 8 (1950) 270-279.[35] B.C. Roy, M.S. Rahman, M.A. Rahman, Measurement of surface acidity of amorphous silica-alumina catalyst by amine titration method, J. Appl. Sci. 5 (2005) 1275-1278.[36] A.A. Castro, O.A. Scelza, G.T. Baronetti,M.A. Fritzler, J.M. Parera, Chlorine adjustment in Al2O3 and naphtha reforming catalysts, Appl. Catal. 6 (1983) 347-353.[37] V.A. Mazzieri, J.M. Grau, J.C. Yori, C.R. Vera, C.L. Pieck, Influence of additives on the Pt metal activity of naphtha reforming catalysts, Appl. Catal. A Gen. 354 (2009) 161-168.[38] J. Xiao, R.J. Puddephatt, Pt-Re clusters and bimetallic catalysts, Coord. Chem. Rev. 143 (1995) 457-500.[39] J.H. Sinfelt, Catalytic reforming of hydrocarbons, In: J.R. Anderson,M. Boudart (Eds.), Catalysts-Science and Technology, vol. 1, Springer-Verlag, Berlin 1981, pp. 257-300.[40] P. Samoila, F. Epron, P. Marécot, C. Especel, Influence of chlorine on the catalytic properties of supported rhodium, iridium and platinum in ring opening of naphthenes, Appl. Catal. A Gen. 462-463 (2013) 207-219.[41] W. Suprun, M. Lutecki, R. Glaser, H. Papp, Acidic catalysts for the dehydration of glycerol: activity and deactivation, J. Mol. Catal. A Chem. 309 (2009) 71-78.[42] S.G. Hegde, R. Kumar, R.N. Bhat, Characterization of the acidity of zeolite Beta by FTi.r. spectroscopy and t.p.d. of NH3, Zeolites 9 (1989) 231-237.[43] A. Auroux, Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials, Top. Catal. 19 (2002) 205-213.[44] H. Vigue, P. Quintard, T. Merle-Mejeana, V. Lorenzelli, An FT-IR study of the chlorination of γ-alumina surfaces, J. Eur. Ceram. Soc. 18 (1998) 305-309.[45] S.R. Bajaj, Prem Pal, J.K. Gupta, L.D. Sharma, G. Murali Dhar, T.S.R. Prasada Rao, Relationship between acidity and catalytic activity of chlorided alumina supported Pt-Sn catalysts, Stud. Surf. Sci. Catal. 113 (1998) 365-373.[46] N.B. Muddada, U. Olsbye, T. Fuglerud, S. Vidotto, A. Marsella, S. Bordiga, D. Gianolio, G. Leofanti, C. Lamberti, The role of chlorine and additives on the density and strength of Lewis and Brønsted acidic sites of γ-Al2O3 support used in oxychlorination catalysis: a FTIR study, J. Catal. 284 (2011) 236-246.[47] Z. Cheng, V. Ponec, Fluorinated alumina as a catalyst for skeletal isomerization of nbutene, Appl. Catal. A Gen. 118 (1994) 127-138.[48] J.B. Wagener, J.J. Hancke, P.A.B. Carstens, Adsorption of HF on alumina, J. Therm. Anal. 39 (1993) 1069-1077.[49] P.J. Chupas, C.P. Grey, Surface modification of fluorinated aluminas: application of solid state NMR spectroscopy to the study of acidity and surface structure, J. Catal. 224 (2004) 69-79.[50] A. Alhanash, E.F. Kozhevnikova, I.V. Kozhevnikov, Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt, Appl. Catal. A Gen. 378 (2010) 11-18.[51] I.V. Kozhevnikov, Heterogeneous acid catalysis by heteropoly acids: Approaches to catalyst deactivation, J. Mol. Catal. A Chem. 305 (2009) 104-111.[52] P. Lauriol-Garbey, J.M.M. Millet, S. Loridant, V. Bellière-Baca, P. Rey, New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein, J. Catal. 280 (2011) 68-76.[53] A. Witsuthammakul, T. Sooknoi, Direct conversion of glycerol to acrylic acid via integrated dehydration-oxidation bed system, Appl. Catal. A Gen. 413-414 (2012) 109-116.[54] B. Katryniok, S. Paul, V. Bellière-Baca, P. Rey, F. Dumeignil, Glycerol dehydration to acrolein in the context of new uses of glycerol, Green Chem. 12 (2010) 2079-2098.[55] B. Katryniok, S. Paul, M. Capron, V. Bellière-Baca, P. Rey, F. Dumeignil, Regeneration of silica-supported silicotungstic acid as a catalyst for the dehydration of glycerol, ChemSusChem 5 (2012) 1298-1306.[56] M. El Doukkali, A. Iriondo, P.L. Arias, J.F. Cambra, I. Gandarias, V.L. Barrio, Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts, Int. J. Hydrog. Energy 37 (2012) 8298-8309.[57] M. El Doukkali, A. Iriondo, P.L. Arias, J. Requies, I. Gandarías, L. Jalowiecki-Duhamel, F. Dumeignil, A comparison of sol-gel and impregnated Pt or/and Ni based γ-alumina catalysts for bioglycerol aqueous phase reforming, Appl. Catal. B Environ. 125 (2012) 516-529.[58] B. Huang, C.H. Bartholomew, S.J. Smith, B.F. Woodfield, Facile solvent-deficient synthesis of mesoporous γ-alumina with controlled pore structures, Microporous Mesoporous Mater. 165 (2013) 70-78.[59] S.M. Kim, Y.J. Lee, J.W. Bae, H.S. Potdar, K.W. Jun, Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether, Appl. Catal. A Gen. 348 (2008) 113-120.[60] R. Vidruk, M.V. Landau, M. Herskowitz, V. Ezersky, A. Goldbourt, Control of surface acidity and catalytic activity of γ-Al2O3 by adjusting the nanocrystalline contact interface, J. Catal. 282 (2011) 215-227.[61] G. Busca, The surface of transitional aluminas: a critical review, Catal. Today 226 (2014) 2-13.[62] N. Jiang, K.S.R. Rao, M.J. Jin, S.E. Park, Effect of hydrogen spillover in decalin dehydrogenation over supported Pt catalysts, Appl. Catal. A Gen. 425-426 (2012) 62-67.[63] S.J. Park, J.W. Bae, G.I. Jung, K.S. Ha, K.W. Jun, Y.J. Lee, H.G. Park, Crucial factors for catalyst aggregation and deactivation on Co/Al2O3 in a slurry-phase Fischer-Tropsch synthesis, Appl. Catal. A Gen. 413-414 (2012) 310-321.[64] M.G. Álvarez, M. Plíšková, A.M. Segarra, F. Medina, F. Figueras, Synthesis of glycerol carbonates by transesterification of glycerol in a continuous systemusing supported hydrotalcites as catalysts, Appl. Catal. B Environ. 113-114 (2012) 212-220.[65] L. León-Reina, A. Cabeza, J. Rius, P. Maireles-Torres, A.C. Alba-Rubio, M. López Granados, Structural and surface study of calcium glyceroxide, an active phase for biodiesel production under heterogeneous catalysis, J. Catal. 300 (2013) 30-36.[66] A. Esipovich, S. Danov, A. Belousov, A. Rogozhin, Improving methods of CaO transesterification activity, J. Mol. Catal. A Chem. 395 (2014) 225-233. |