[1] M. Zerfa, B.W. Brooks, Prediction of vinyl chloride drop sizes in stabilised liquid-liquid agitated dispersion, Chem. Eng. Sci. 51 (12) (1996) 3223-3233.
[2] P. Wioletta, Modelling of high viscosity oil drop breakage process in intermittent turbulence, Chem. Eng. Sci. 61 (9) (2006) 2986-2993.
[3] W. Podgórska, Influence of dispersed phase viscosity on drop coalescence in turbulent flow, Chem. Eng. Res. Des. 85 (5) (2007) 721-729.
[4] G.I. Taylor, The formation of emulsions in definable fields of flow, Proc. R. Soc. Lond. A 146 (858) (1934) 501-523.
[5] B. Bentley, L. Leal, An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows, J. Fluid Mech. 167 (1986) 241-283.
[6] H.A. Stone, Dynamics of drop deformation and breakup in viscous fluids, Annu. Rev. Fluid Mech. 26 (1) (1994) 65-102.
[7] V. Cristini, S. Guido, A. Alfani, J. B?awzdziewicz, M. Loewenberg, Drop breakup and fragment size distribution in shear flow, J. Rheol. 47 (2003) 1283-1298.
[8] J. Janssen, A. Boon, W. Agterof, Influence of dynamic interfacial properties on droplet breakup in plane hyperbolic flow, AICHE J. 43 (6) (1997) 1436-1447.
[9] D. Link, S. Anna, D. Weitz, H. Stone, Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92 (5) (2004) 054503-054506.
[10] T. Cubaud, Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows, Phys. Rev. E 80 (2) (2009) 026307-026310.
[11] Y. Navot, Critical behavior of drop breakup in axisymmetric viscous flow, Phys. Fluids 11 (5) (1999) 990-996.
[12] F. Rumscheidt, S. Mason, Break-up of stationary liquid threads, J. Colloid Sci. 17 (3) (1962) 260-269.
[13] R. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3 (3) (2007) 245-281.
[14] S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics, Lab Chip 8 (2) (2008) 198-220.
[15] J.-T. Wang, J. Wang, J.-J. Han, Fabrication of advanced particles and particle-based materials assisted by droplet based microfluidics, Small 7 (13) (2011) 1728-1754.
[16] L. Ménétrier-Deremble, P. Tabeling, Droplet breakup in microfluidic junctions of arbitrary angles, Phys. Rev. E 74 (3) (2006) 035303-035306.
[17] M. Samie, A. Salari, M.B. Shafii, Breakup of microdroplets in asymmetric T junctions, Phys. Rev. E 87 (5) (2013) 053003-053010.
[18] C. Chung, M. Lee, K. Char, K.H. Ahn, S.J. Lee, Droplet dynamics passing through obstructions in confined microchannel flow, Microfluid. Nanofluid. 9 (6) (2010) 1151-1163.
[19] S. Protière, M.Z. Bazant, D.A. Weitz, H.A. Stone, Droplet breakup in flow past an obstacle: a capillary instability due to permeability variations, Europhys. Lett. 92 (5) (2010) 54002-54007.
[20] L. Salkin, A. Schmit, L. Courbin, P. Panizza, Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models, Lab Chip 13 (15) (2013) 3022-3032.
[21] J. Liu, N.-T. Nguyen, Numerical simulation of droplet-based microfluidics, Micro Nanosystes 2 (3) (2010) 1-8.
[22] M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications, Microfluid. Nanofluid. 12 (6) (2012) 841-886.
[23] J. Wang, J. Liu, J. Han, J. Guan, Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method, Phys. Rev. Lett. 110 (6) (2013) 066001-066005.
[24] J. Tao, X. Song, J. Liu, J.Wang, Microfluidic rheology of themultiple-emulsion globule transiting in a contraction tube through a boundary elementmethod, Chem. Eng. Sci. 97 (2013) 328-336.
[25] J.Wang, J. Liu, J. Han, J. Guan, Rheology investigation of the globule ofmultiple emulsions with complex internal structures through a boundary element method, Chem. Eng. Sci. 96 (2013) 87-97.
[26] L. Sang, Y. Hong, F.Wang, Investigation of viscosity effect on droplet formation in Tshaped microchannels by numerical and analytical methods, Microfluid. Nanofluid. 6 (5) (2008) 621-635.
[27] S. Afkhami, A.M. Leshansky, Y. Renardy, Numerical investigation of elongated drops in a microfluidic T-junction, Phys. Fluids 23 (2) (2011) 022002-022015.
[28] A. Bedram, A. Moosavi, Droplet breakup in an asymmetric microfluidic T junction, Eur. Phys. J. E 34 (8) (2011) 34-45.
[29] J. Wang, D. Yu, Asymmetry of flow fields and asymmetric breakup of a droplet, Microfluid. Nanofluid. 18 (2015) 709-715.
[30] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335-354.
[31] H.A. Stone, L.G. Leal, Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid, J. Fluid Mech. 198 (1989) 399-427.
[32] M. De Menech, P. Garstecki, F. Jousse, H. Stone, Transition from squeezing to dripping in a microfluidic T-shaped junction, J. Fluid Mech. 595 (2008) 141-161. |