[1] G.A. Silvacastro, B. Rodelas, C. Perucha, J. Laguna, J. Gonzalezlopez, C. Calvo, Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents:assays in a pilot plant, Sci. Total Environ. 347(2013) 445-446.[2] Y. Chen, C. Li, Z. Zhou, J. Wen, X. You, Y. Mao, C. Lu, G. Huo, X. Jia, Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis, Appl. Biochem. Biotechnol. 172(2014) 3433-3447.[3] L. Meng, H. Li, M. Bao, P. Sun, Metabolic pathway for a new strain Pseudomonas synxantha LSH-7:from chemotaxis to uptake of n-hexadecane, Sci. Rep. 7(2017) 39068.[4] Z. Wang, Z. Liu, Y. Yang, T. Li, M. Liu, Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China, Chemosphere 89(2012) 221-227.[5] D. Ollis, Slick solution for oil spills, Nature 358(1992) 453-454.[6] L.B. Salam, O.S. Obayor, O.S. Akashoro, G.O. Okogie, Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil, Int. J. Agric. Biol. 13(2011) 1560-853013.[7] L.W. Peng, M.J. Sheu, L.Y. Lin, C.T. Wu, H.M. Chiang, W.H. Lin, M.C. Lee, H.C. Chen, Effect of heat treatments on the essential oils of kumquat (Fortunella margarita Swingle), Food Chem. 136(2013) 532-537.[8] C. Okieimen, F. Okieimen, Effect of natural rubber processing sludge on the degradation of crude oil hydrocarbons in soil, Bioresour. Technol. 82(2002) 95-97.[9] M.B. Yerima, A.A. Balogun, A.A. Farouq, S. Muhammad, Laboratory based degradation of light crude oil by aquatic phycomycetes, Afr. J. Biotechnol. 8(2009) 3851-3853.[10] M. Romantschuk, I. Sarand, T. Petanen, R. Peltola, M. Jonsson-Vihanne, T. Koivula, K. Yrjala, K. Haahtela, Means to improve the effect of in situ bioremediation of contaminated soil:an overview of novel approaches, Environ. Pollut. 107(2000) 179-185.[11] L. Martinkova, B. Uhnakova, M. Patek, J. Nesvera, V. Kren, Biodegradation potential of the genus Rhodococcus, Environ. Int. 35(2009) 162.[12] J. Yan, J. Wen, H. Li, S. Yang, Z. Hu, The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis, Biochem. Eng. J. 24(2005) 243-247.[13] A.A. Shah, A. Nawaz, L. Kanwal, F. Hasan, S. Khan, M. Badshah, Degradation of poly (ε-caprolactone) by a thermophilic bacterium Ralstonia sp. strain MRL-TL isolated from hot spring, Int. Biodeterior. Biodegrad. 98(2015) 35-42.[14] U. Walter, M. Beyer, J. Klein, H.J. Rehm, Degradation of pyrene by Rhodococcus sp. UW1, Appl. Microbiol. Biotechnol. 34(1991) 671-676.[15] B. Cao, K. Nagarajan, K.C. Loh, Biodegradation of aromatic compounds:current status and opportunities for biomolecular approaches, Appl. Microbiol. Biotechnol. 85(2009) 207-228.[16] B. Mahanty, K. Pakshirajan, D.V. Venkata, Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system, Bioresour. Technol. 99(2008) 2694-2698.[17] W. Qin, F.Q. Fan, Y. Zhu, Y. Wang, X. Liu, A. Ding, J. Dou, Comparative proteomic analysis and characterization of benzo(a)pyrene removal by Microbacterium sp. strain M.CSW3 under denitrifying conditions, Bioprocess Biosyst. Eng. 40(12) (2017) 1825-1838.[18] L. Wang, Y. Tang, S. Wang, R.L. Liu, M.Z. Liu, Y. Zhang, F.L. Liang, L. Feng, Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes, Extremophiles 10(2006) 347.[19] W. Wang, B. Cai, Z. Shao, Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3, Front. Microbiol. 5(2014) 711.[20] J.S. Seo, Y.S. Keum, Q.X. Li, Bacterial degradation of aromatic compounds, Int. J. Environ. Res. Public Health 6(2009) 278.[21] M.R. Viant, U. Sommer, Mass spectrometry based environmental metabolomics:a primer and review, Metabolomics 9(2013) 144-158.[22] M.Z. Ding, J.S. Cheng, W.H. Xiao, B. Qiao, Y.J. Yuan, Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS, Metabolomics 5(2009) 229.[23] X. Pan, H. Liu, J. Liu, C. Wang, J. Wen, Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acidproduction from xylose, Bioresour. Technol. 222(2016) 24-32.[24] M. Eshelli, L. Harvey, R. Edrada-Ebel, B. Mcneil, Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0, Toxins 7(2015) 439.[25] R.A. Scott, S.E. Lindow, Transcriptional control of quorum sensing and associated metabolic interactions in Pseudomonas syringae strain B728a, Mol. Microbiol. 99(2015) 1080-1098.[26] W. Lu, X. Su, M.S. Klein, I.A. Lewis, O. Fiehn, J.D. Rabinowitz, Metabolite measurement:pitfalls to avoid and practices to follow, Annu. Rev. Biochem. 86(2017) 277.[27] O.G. Brakstad, A.G.G. Lodeng, Microbial diversity during biodegradation of crude oil in seawater from the north sea, Microb. Ecol. 49(2005) 94-103.[28] O.S. Obayori, S.A. Adebusoye, A.O. Adewale, G.O. Oyetibo, O.O. Oluyemi, R.A. Amokun, M.O. Ilori, Differential degradation of crude oil (Bonny Light) by four Pseudomonas strains, J. Environ. Sci. 21(2009) 243-248.[29] A. Wentzel, H. Sletta, S. Consortium, T.E. Ellingsen, P. Bruheim, Intracellular metabolite pool changes in response to nutrient depletion induced metabolic switching in Streptomyces coelicolor, Meta 2(2012) 178-194.[30] M. Xia, D. Huang, S. Li, J. Wen, X. Jia, Y. Chen, Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis, Biotechnol. Bioeng. 110(2013) 2717-2730.[31] M.Z. Ding, X. Zhou, Y.J. Yuan, Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations, Metabolomics 6(2010) 42-55.[32] L. Huang, C. Liu, Y. Liu, X. Jia, The composition analysis and preliminary cultivation optimization of a PHA-producing microbial consortium with xylose as a sole carbon source, Waste Manag. 52(2016) 77.[33] J.B. van Beilen, E.G. Funhoff, Expanding the alkane oxygenase toolbox:new enzymes and applications, Curr. Opin. Biotechnol. 16(2005) 308-314.[34] C. Muangchinda, A. Yamazoe, D. Polrit, H. Thoetkiattikul, W. Mhuantong, V. Champreda, O. Pinyakong, Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from a river sediment:a microcosm study and bacterial community analysis, Environ. Sci. Pollut. Res. 24(2017) 4591-4602.[35] B. Wang, Q. Lai, Z. Cui, T. Tan, Z. Shao, A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1, Environ. Microbiol. 10(2008) 1948-1963.[36] S. Dietmair, M.P. Hodson, L.E. Quek, N.E. Timmins, P. Chrysanthopoulos, S.S. Jacob, P. Gray, L.K. Nielsen, Metabolite profiling of CHO cells with different growth characteristics, Biotechnol. Bioeng. 109(2012) 1404-1414.[37] B. Wang, J. Liu, H. Liu, D. Huang, J. Wen, Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus, J. Ind. Microbiol. Biotechnol. 42(2015) 949.[38] Y. Liu, J. Liu, C. Li, J. Wen, R. Ban, X. Jia, Metabolic profiling analysis of the degradation of phenol and 4-chlorophenol by Pseudomonas sp. cbp1-3, Biochem. Eng. J. 90(2014) 316-323.[39] N. Lu, D. Wei, X. Jiang, F. Chen, S. Yang, Fatty acids profiling and biomarker identification in snow slga Chlamydomonas sivalis by NaCl stress using GC/MS and multivariate statistical analysis, Anal. Lett. 45(2012) 1172-1183.[40] M. Abouseoud, A. Yataghene, A. Amrane, R. Maachi, Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens, J. Hazard. Mater. 180(2010) 131-136.[41] C. Dorta, R. Cruz, P. de Oliva-Neto, D.J.C. Moura, Sugarcane molasses and yeast powder used in the fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611, J. Ind. Microbiol. Biotechnol. 33(2006) 1003.[42] C.N. Mulligan, R.N. Yong, B.F. Gibbs, Surfactant-enhanced remediation of contaminated soil:a review, Eng. Geol. 60(2001) 371-380.[43] H. Yu, G.H. Huang, H.N. Xiao, L. Wang, W. Chen, Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems, Environ. Sci. Pollut. Res. 21(2014) 10536-10549.[44] W.H. Noordman, J.H.J. Wachter, G.J.D. Boer, D.B. Janssen, The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability, J. Biotechnol. 94(2002) 195. |