[1] X. Ma, W.J. Bruckard, R. Holmes, Effect of collector, pH and ionic strength on the cationic flotation of kaolinite, Int. J. Miner. Process. 93(1) (2009) 54-58.[2] S.W. Huang, B.Y. Hang, J. Hu, Y.Y. Deng, Z.Q. Zheng, The application of pH apparatus in flotation, Nonferrous Metals Miner. Process. Sect. 2(2008) 41-45.[3] Q.W. Qin, Y.H. Hu, Dissolution of sparingly soluble minerals and its effect on floatability of minerals, Min. Metall. Eng. 2(1999) 30-33.[4] A.M. Vieira, A.E.C. Peres, The effect of amine type, pH, and size range in the flotation of quartz, Miner. Eng. 20(10) (2007) 1008-1013.[5] Z.Y. Li, H.M. Gu, Y.C. Zhai, Effect of pH value on coprecipitation recovery rates of W-Cu (70 g:30 g), Rare Metal Mater. Eng. 37(3) (2008) 460-463.[6] W.P. Liu, X. Hui, X.Y. Yang, X.C. Shi, Extraction of molybdenum from low-grade Ni-Mo ore in sodium hypochlorite solution under mechanical activation, Miner. Eng. 24(14) (2011) 1580-1585.[7] P. Kadlec, B. Gabrys, Adaptive on-line prediction soft sensing without historical data, International Joint Conference on Neural Networks IEEE Xplore 2010, pp. 1-8.[8] H. Kaneko, K. Funatsu, Adaptive soft sensor model using online support vector regression with the time variable and discussion on appropriate hyperparameters and window size, Comput. Chem. Eng. 58(45) (2013) 288-297.[9] C.X. Liu, J.L. Ding, A.J. Toprac, T.Y. Chai, Data-based adaptive online prediction model for plant-wide production indices, Knowl. Inf. Syst. 41(2) (2014) 401-421.[10] W.M. Shao, X.M. Tian, Soft sensor for nonlinear processes based on ensemble partial least squares with adaptive localization, Control and Decision Conference, IEEE Xplore 2015, pp. 737-742.[11] N. Sammaknejad, B. Huang, R.S. Sanders, L.A. Espejo, Adaptive soft sensing and online estimation of the critical minimum velocity with application to an oil sand primary separation vessel, IfacPapersonline 48(8) (2015) 211-216.[12] R. Mallipeddi, P.N. Suganthan, Improved adaptive differential evolution algorithm with external archive, Swarm, Evolutionary, and Memetic Computing, Springer International Publishing 2013, pp. 170-178.[13] J. Deng, L. Xie, L. Chen, S. Khatibisepehr, B. Huang, F.W. Xu, et al., Development and industrial application of soft sensors with on-line Bayesian model updating strategy, J. Process Control 23(3) (2013) 317-325.[14] J.L. Ding, T.Y. Chai, H. Wang, Dynamic Prediction Model for Mixed Concentrate Grade of Mineral Processing Plant, IEEE Conference on Decision and Control, Vol. 58(8), 2010, pp. 6773-6778.[15] Mika Liukkonen, Eero Halikka, Teri Hiltunen, Yrjo Hiltunen, Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler, ICAE 2011-International Conference on Applied Energy 2011, pp. 483-490.[16] H.J. Galicia, Q.P. He, J. Wang, Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control, Control. Eng. Pract. 20(8) (2012) 747-760.[17] E. Putz, A. Cipriano, Hybrid Dynamic Predictive Model for Rougher Flotation, Ifac Proceedings Volumes, Vol. 46(16), 2013, pp. 155-160.[18] P.F. Cao, X. Luo, Modeling of soft sensor for chemical process, CIESC J. 64(3) (2012) 788-800.[19] Z.J. Zeng, X.L. Wang, C.H. Yang, J. Wu, Multi-model based on image feature reduction for pH value soft-sensing in froth flotation process, IWACⅢ 2013-3rd International Workshop on Advanced Computational Intelligence and Intelligent Informatics, 2014.[20] S.W. Bi, Alumina Production Process, Chemical Industry Press Beijing, 2006.[21] W.T. Hu, H.J. Wang, C.Y. Sun, Y. He, C.L. Ji, G.L. Wang, et al., Reaction mechanism between ferric bauxite and soda lime in reduction atmosphere, J. Harbin Eng. Univ. 34(5) (2013) 662-668. |