[1] M.M. Baum, J.A. Moss, S.H. Pastel, G.A. Poskrebyshev, Hydrogen cyanide exhaust emissions from in-use motor vehicles, Environ. Sci. Technol. 41 (2007) 857-862 [2] T.C. Marrs, R.L. Maynard, F.R. Sidell, Book review: chemical warfare agents toxicology and treatment, J. Appl. Toxicol. 17 (1997) 93 [3] J. Bright, T. C. Marrs, Toxicity of inhaled HCN, Hum. Toxicol. 3 (1984) 521-222. [4] B. Wang, H.B. Sheng, Y.Q. Shi, L. Song, Y. Zhang, Y. Hu, W.Z. Hu, The influence of zinc hydroxy stannate on reducing toxic gases (CO, NOnull and HCN) generation and fire hazards of thermoplastic polyurethane composites, J. Hazard. Mater. 314 (2016) 260-269 [5] F. Radtke, R. Koeppel, A. Baiker, Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5, Appl. Catal. A: General 107 (1994) L125-L132 [6] M. Jiang, Z.H. Wang, P. Ning, S.L. Tian, X.F. Huang, Y.W. Bai, Y. Shi, X.G. Ren, W. Chen, Y.S. Qin, J. Zhou, R.R. Miao, Dust removal and purification of calcium carbide furnace off-gas, J. Taiwan Inst. Chem. Eng. 45 (3) (2014) 901-907 [7] S. Schäfer, B. Bonn, Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part 1. Homogeneous reactions, Fuel 79 (2000) 1239-1246 [8] P. Dagaut, P. Glarborg, M.U. Alzueta, The oxidation of hydrogen cyanide and related chemistry, Prog. Energy Combust. Sci. 34 (2008) 1-46 [9] T.M. Oliver, K. Jugoslav, P. Aleksandar, Synthetic activated carbons for the removal of hydrogen cyanide from air, Chem. Eng. Process. 44 (2005) 1181-1187 [10] L.B. Shi, Y.P. Wang, H.K. Dong, First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe, Appl. Surf. Sci. 329 (2015) 330-336 [11] Q. Zhao, S.L. Tian, L.X. Yan, Q.L. Zhang, P. Ning, Novel HCN sorbents based on layered double hydroxides: sorption mechanism and performance, J. Hazard. Mater. 285 (2014) 250-258 [12] H. Tan, X.B. Wang, C.L. Wang, T.M. Xu, Characteristics of HCN removal using CaO at high temperatures, Energy Fuel 23 (2009) 1545-1550 [13] T. Shimizu, K. Ishizu, S. Kobayashi, S. Kimura, T. Shimizu, M. Inagaki, Hydrolysis and oxidation of hydrogen cyanide over limestone under fluidized bed combustion conditions, Energy Fuel 7 (1993) 645-647 [14] H.B. Zhao, R.G. Tonkyn, S.E. Barlow, B.E. Koel, C.H.F. Peden, Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst, Tonkyn, Appl. Catal. B. 652 (2006) 82-290 [15] P. Ning, J. Qiu, X. Wang, W. Liu, W. Chen, Metal loaded zeolite adsorbents for hydrogen cyanide removal, J. Environ. Sci. 25 (2013) 808-814 [16] O. Kröcher, M. Elsener, Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts, Appl. Catal. B. 92 (2009) 75-89 [17] Q. Wang, X. Wang, L. Wang, Y.N. Hu, P. Ning, Y.X. Ma, L.M. Tan, Catalytic oxidation and hydrolysis of HCN over LanullCunull/TiO2 catalysts at low temperatures, Microporous Mesoporous Mater. 282 (2019) 260-268 [18] T. Miyadera, Selective reduction of NOnull by ethanol on catalysts composed of Ag/Al2O3 and Cu/TiO2 without formation of harmful by-products, Appl. Catal. B. 16 (1998) 155-164 [19] N. Sutradhar, A. Sinhamahapatra, S. Pahari, M. Jayachandran, B. Subramanian, H.C. Bajaj, A.B. Panda, Facile low-temperature synthesis of ceria and samarium-doped ceria nanoparticles and catalytic allylic oxidation of cyclohexene, J. Phys. Chem. C 115 (2011) 7628-7637 [20] Y.S. She, Q. Zheng, L. Li, Y.Y. Zhan, C.Q. Chen, Y.H. Zheng, X.Y. Lin, Rare earth oxide modified CuO/CeO2 catalysts for the water-gas shift reaction, Int. J. Hydrog. Energy 34 (2009) 8929-8936 [21] L. Tan, Q. Tao, H.Y. Gao, J. Li, D.D. Jia, M. Yang, Preparation and catalytic performance of mesoporous ceria-base composites CuO/CeO2, Fe2O3/CeO2, and La2O3/CeO2, J. Porous. Mater. 24 (2017) 795-803 [22] J.J. Zhang, J. Sun, J.G. Li, T. Zhou, Effect of precipitants on performance of Au/CeO2 catalyst for CO oxidation, J. Funct. Mater. 48 (2017) 10274-10279 [23] J. Sun, J.G. Li, C.N. Xian, L.G. Zhang, Y.L. Cheng, H. Li, L.Q. Chen, Flowerlike microspheres catalyst NiO/La2O3 for ethanol-H2 production, Int. J. Hydrog. Energy 35 (2010) 11687-11692 [24] H.F. Li, G.Z. Lu, Q.G. Dai, Y.Q. Wang, Y. Guo, Y.L. Guo, Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes, ACS Appl. Mater. Interfaces 2 (2010) 838-846 [25] C.W. Sun, H. Li, L.Q. Chen, Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction, J. Phys. Chem. Solids 68 (2007) 1785-1790 [26] P.X. Huang, F. Wu, B.L. Zhu, X.P. Gao, H.Y. Zhu, T.Y. Yan, W.P. Huang, S.H. Wu, D.Y. Song, CeO2 Nanorods and gold nanocrystals supported on CeO2 Nanorods as catalyst, J. Phys. Chem. B 109 (2005) 19169-19174 [27] R. Xu, X. Wang, D.S. Wang, K.B. Zhou, Y.D. Li, Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO, J. Catal. 237 (2006) 426-430 [28] Z.Y. Fan, Z.X. Zhang, W.J. Fang, X. Yao, J.C. Zou, W.F. Shangguan, Low-temperature catalytic oxidation of formaldehyde over Co3O4 catalysts prepared using various precipitants, Chin. J. Catal. 37 (2016) 947-954 [29] W. Duan, J. Li, X.D. Wu, F. Lin, Promotional effect of potassium on soot oxidation activity and SO-poisoning resistance of CuO/CeO2 catalyst, Catal. Commun. 9 (2008) 1898-1901 [30] Y.N. Hu, J.P. Liu, J.H. Cheng, L.L. Wang, L. Tao, Q. Wang, X.Q. Wang, P. Ning, Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides, Appl. Surf. Sci. 427 (2017) 843-850 [31] W.J. Zhu, X. Chen, J.H. Jin, X. Di, C.H. Liang, Z.M. Liu, Insight into catalytic properties of Co3O4-CeO2 binary oxides for propane total oxidation, Chin. J. Catal. 41 (2020) 679-690 [32] M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Manganese oxide catalysts for NOx reduction with NH3 at low temperatures, Appl. Catal. A. 327 (2007) 261-269 [33] X.J. Yao, L. Chen, T.T. Kong, S.M. ding, Q. Luo, F.M. Yang, Support effect of the supported ceria-based catalysts during NH3 -SCR reaction, Chin. J. Catal. 38 (2017) 1423-1430 [34] S.G. Wu, X.J. Yao, L. Zhang, Y. Cao, W.X. Zou, L.L. Li, K.L. Ma, C.J. Tang, F. Gao, L.Y. Dong, Improved low temperature NH3-SCR performance of FeMnTiOnull mixed oxide with CTAB-assisted synthesis, Chem. Commun. 51 (2015) 3470-3473 [35] R.N. Nickolov, D.R. Mehandjiev, Comparative study on removal efficiency of impregnated carbons for hydrogen cyanide vapors in air depending on their phase composition and porous textures, J. Colloid Interface Sci. 273 (2004) 87-94 [36] J.F. Li, G.Z. Lu, H.F. Li, Y.Q. Wang, Y. Guo, Y.L. Guo, Facile synthesis of 3D flowerlike CeO2 microspheres under mild condition with high catalytic performance for CO oxidation, J. Colloid Interface Sci. 360 (2011) 93-99 [37] X. Fang, C.Q. Chen, X.Y. Lin, Y.S. She, Y.Y. Zhan, Q. Zheng, Effect of La2O3 on microstructure and catalytic performance of CuO/CeO2 catalyst in water-gas shift reaction, Chin. J. Catal. 33 (2012) 425-431 [38] W.J. Shen, C. Liu, H.J. Guo, L.H. Yang, X.N. Wang, Z.C. Feng, Synthesis of zero, one, and three dimensional CeO2 particles and CO oxidation over CuO/CeO2, Chin. J. Catal. 32 (2011) 1136-1141 [39] X.L. Tang, B.C. Zhang, Y. Li, Y.D. Xu, Q. Xin, W.J. Shen, CuO/CeO2 catalysts: redox features and catalytic behaviors, Appl. Catal. A. 288 (2005) 116-125 [40] Y.J. Zhang, G.Z. Wang, L. Zhang, D.H. Xing, H. He, X.H. Zi, Synthesis characterization and catalytic properties of three-dimensional wormhole like mesoporous Ag2O/Ce0.6Zr0.32Y0.05O2 nanoparticles in methane oxidation, Chem. J. Chin. U. 28 (2007) 1929-1934 [41] A. Rumplecker, F. Kleitz, E.L. Salabas, F. Schüth, Hard templating pathways for the synthesis of nanostructured porous Co3O4, Chem. Mater. 19 (2007) 485-496 [42] J.B. Hu, C.L. Yu, Y.D. Bi, L.F. Wei, J.C. Chen, X.R. Chen, Preparation and characterization of Ni/CeO2-SiO2 catalysts and their performance in catalytic partial oxidation of methane to syngas, Chin. J. Catal. 35 (2014) 8-20 [43] G.K. Prasad, J.P. Kumar, P.V.R.K. Ramacharyulu, Impregnated charcoal cloth for the treatment of air polluted with hydrogen cyanide, Environ. Prog. Sustain. Energy 32 (2013) 715-720 [44] J.J. Zhang, Z.G. Feng, J.T. Lu, C.S. Cha, EX- situ FTIR reflection-absorption spectroscopic studies of surface films on copper electrode formed in cyanide and thiocyanate solutions, Chin. J. Inorg. Chem. 6 (1990) 319-323 [45] P. Wang, H. Sun, X. Quan, S. Chen, Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOnull with NH3 at low temperature, J. Hazard. Mater. 301 (2015) 512-521 [46] P.W. Ye, Z.Q. Luan, K. Li, L.Q. Yu, J.C. Zhang, The use of a combination of activated carbon and nickel microfibers in the removal of hydrogen cyanide from air, Carbon. 47 (2009) 1799-1805 [47] X.Q. Wang, J.H. Cheng, X.Y. Wang, Y.Z. Shi, F.Y. Chen, X.L. Jing, F. Wang, Y.X. Ma, L.L. Wang, P. Ning, Mn based catalysts for driving high performance of HCN catalytic oxidation to N2 under micro-oxygen and low temperature conditions, Chem. Eng. J. 333 (2018) 402-413 [48] Q.B. Zhang, K.L. Zhang, D.G. Xu, G.C. Yang, H. Huang, F.D. Nie, C.M. Liu, S.H. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications, Prog. Mater. Sci. 60 (2014) 208-337 [49] J. Jung, S. Bae, W. Lee, Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst, Appl. Catal. B. 127 (2012) 148-158 [50] E.Y. Kaneko, S.H. Pulcinelli, V.T.D. Silva, C.V. Santilli, Sol-gel synthesis of titania-alumina catalyst supports, Appl. Catal. A. 235 (2002) 71-78 [51] J.W. Zhang, T. Ito, T. Okada, E. Onon, T. Suda, Improvement of NOnull formation model for pulverized coal combustion by increasing oxidation rate of HCN, Fuel. 113 (2013) 697-706 [52] S. Tamm, H.H. Ingelsten, A.E.C. Palmqvist, On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina, J. Catal. 255 (2008) 304-312 |