[1] F.M. Baena-Moreno, M. Rodríguez-Galán, F. Vega, et al., Carbon capture and utilization technologies:A literature review and recent advances, Energy Sources Part A 41(2019) 1403-1433. [2] J. Tollefson, CO2 emissions set to spike in 2017, Nature 551(2017) 283. [3] E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy:Review of CO2 capture and reuse technologies, J. Supercrit. Fluids 132(2018) 3-16. [4] B. Zhao, F.Z. Liu, Z. Cui, et al., Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant:Process improvement, Appl. Energy 185(2017) 362-375. [5] P.G. Jessop, D.J. Heldebrant, X.W. Li, et al., Green chemistry:reversible nonpolar-topolar solvent, Nature. 436(2005) 1102. [6] L.J. Fu, Y.Y. Liu, H.F. Lu, et al., Reactivity of hydroxyls and stability of DBU/C3-alcohol/CO2 ionic compounds, CIESC J. 66(2015) 4163-4169. [7] S. Lin, H.F. Lu, Y.Y. Liu, et al., Density studies of 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU)-glycerol and CO2-DBU-glycerol solutions at temperatures between 288.15 K and 328.15 K, J. Chem. Thermodyn. 123(2018) 8-16. [8] Y.Y. Liu, S. Lin, H.F. Lu, et al., Studies on surface tension of 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU)-glycerol and CO2-DBU-glycerol solutions at temperatures from 288.1 K to 323.1 K, J. Chem. Thermodyn. 125(2018) 32-40. [9] D.J. Heldebrant, C.R. Yonker, P.G. Jessop, et al., Organic liquid CO2 capture agents with high gravimetric CO2 capacity, Energy Environ. Sci. 1(2008) 487-493. [10] P.M. Mathias, K. Afshar, F. Zheng, et al., Improving the regeneration of CO2-binding organic liquids with a polarity change, Energy Environ. Sci. 6(2013) 2233-2242. [11] D.J. Heldebrant, P.K. Koech, J.E. Rainbolt, et al., Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture, Chem. Eng. J. 171(2011) 794-800. [12] A. Ostonen, E. Sapei, P. Uusi-Kyyny, et al., Measurements and modeling of CO2 solubility in 1,8-diazabicyclo-[5.4.0] -undec-7-ene-glycerol solutions, Fluid Phase Equilib. 374(2014) 25-36. [13] I. Anugwom, P. Mäki-Arvela, P. Virtanen, et al., Switchable ionic liquids (SILs) based on glycerol and acid gases, RSC Adv. 1(2011) 452-457. [14] S. Lin, Study on thermodynamical properties of 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU)-glycerol and CO2-DBU-glycerol solutions, (M. Thesis) Sichuan Univ., Chengdu, 2018. [15] Y.S. Chen, C.C. Lin, H.S. Liu, Mass transfer in a rotating packed bed with viscous Newtonian and non-Newtonian fluids, Ind. Eng. Chem. Res. 44(2005) 1043-1051. [16] L.L. Zhang, J.X. Wang, Y. Xiang, et al., Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor:Mass transfer study, Ind. Eng. Chem. Res. 50(2011) 6957-6964. [17] C.Y. Chiang, Y.S. Chen, M.S. Liang, et al., Absorption of ethanol into water and glycerol/water solution in a rotating packed bed, J. Taiwan Inst. Chem. Eng. 40(2009) 418-423. [18] B.T. Zhao, W.W. Tao, M. Zhong, et al., Process, performance and modeling of CO2 capture by chemical absorption using high gravity:A review, Renew. Sust. Energ. Rev. 65(2016) 44-56. [19] M.H. Wang, A.S. Joel, C. Ramshaw, et al., Process intensification for post-combustion CO2 capture with chemical absorption:A critical review, Appl. Energy 158(2015) 275-291. [20] Q.F. Jian, X.H. Deng, S.J. Deng, Experimental studies on gas-liquid two phase fluid dynamics performance in rotating bed using wave form disk plate, Chem. Eng. 26(1998) 6-9. [21] W.Z. Jiao, Y.Z. Liu, G.S. Qi, Gas pressure drop and mass transfer characteristics in a cross-flow rotating packed bed with porous plate packing, Ind. Eng. Chem. Res. 49(2010) 3732-3740. [22] F. Haseidl, J. Pottbäcker, O. Hinrichsen, Gas-liquid mass transfer in a rotor-stator spinning disc reactor:Experimental study and correlation, Chem. Eng. Process. Process Intensif. 104(2016) 181-189. [23] C.C. Lin, C.R. Chu, Feasibility of carbon dioxide absorption by NaOH solution in a rotating packed bed with blade packings, Int. J. Greenh. Gas Control 42(2015) 117-123. [24] C.C. Lin, Y.W. Kuo, Mass transfer performance of rotating packed beds with blade packings in absorption of CO2 into MEA solution, Int. J. Heat Mass Transf. 97(2016) 712-718. [25] N. El Hadri, D.V. Quang, E.L.V. Goetheer, et al., Aqueous amine solution characterization for post-combustion CO2 capture process, Appl. Energy 185(2017) 1433-1449. [26] M. Zhang, H.F. Lu, B. Liang, et al., Reaction progress and kinetics of CO2 with glycerol in the presence of DBU, Chem. Ind. Eng. Prog. 35(2016) 3078-3085. [27] P. Eisenklam, On ligament formation from spinning discs and cups, Chem. Eng. Sci. 19(1964) 693-694. [28] B. Bizjan, Š. Brane, M. Hočevar, et al., Ligament-type liquid disintegration by a spinning wheel, Chem. Eng. Sci. 116(2014) 172-182. [29] D.X. Wang, X. Ling, H. Peng, et al., Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge, Ind. Eng. Chem. Res. 55(2016) 9267-9275. [30] Y. Ouyang, H.K. Zou, X.Y. Gao, et al., Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed, Chem. Eng. Process. Process Intensif. 123(2018) 185-194. [31] S. Munjal, M.P. Dudukovć, P. Ramachandran, Mass-transfer in rotating packed beds-I. Development of gas-liquid and liquid-solid mass-transfer correlations, Chem. Eng. Sci. 44(1989) 2245-2256. [32] K. Guo, A study on liquid flowing inside the higee rotor, (Ph. D. Thesis) Beijing University of Chemical Technology, Beijing, 1996. [33] C.C. Lin, Y.H. Lin, C.S. Tan, Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds, J. Hazard. Mater. 175(2010) 344-351. [34] M.P. Sheng, B.C. Sun, F.M. Zhang, et al., Mass-transfer characteristics of the CO2 absorption process in a rotating packed bed, Energy Fuel 30(2016) 4215-4220. [35] T.N. Borhani, E. Oko, M.H. Wang, Process modelling and analysis of intensified CO2 capture using monoethanolamine (MEA) in rotating packed bed absorber, J. Clean. Prod. 204(2018) 1124-1142. [36] Z. Idris, N.B. Kummamuru, D.A. Eimer, Viscosity measurement of unloaded and CO2-loaded aqueous monoethanolamine at higher concentrations, J. Mol. Liq. 243(2017) 638-645. [37] M.P. Sheng, C.X. Xie, X.F. Zeng, et al., Intensification of CO2 capture using aqueous diethylenetriamine (DETA) solution from simulated flue gas in a rotating packed bed, Fuel 234(2018) 1518-1527. [38] C.H. Yu, T.W. Wu, C.S. Tan, CO2 capture by piperazine mixed with non-aqueous solvent diethylene glycol in a rotating packed bed, Int. J. Greenh. Gas Control 19(2013) 503-509. [39] J. Lee, T. Kolawole, P. Attidekou, Carbon capture from a simulated flue gas using a rotating packed bed adsorber and mono ethanol amine (MEA), Energy Procedia 114(2017) 1834-1840. |