[1] M.K. Ghose, Complete physico-chemical treatment for coke plant effluents, Water Res. 36(5) (2002) 1127-1134. [2] Z.H. Liang, S. Li, W.Q. Guo, The kinetics for electrochemical removal of ammonia in coking wastewater, Chinese. J. Chem. Eng. 19(4) (2011) 570-574. [3] Y.M. Kim, D. Park, D.S. Lee, J.M. Park, Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment, J. Hazard. Mater. 152(3) (2008) 915-921. [4] G.X. Liu, H. Zhen, S.L. Sun, X.Y. Hu, Aerobic degradation and microbial community succession of coking wastewater with municipal sludge, Environ. Sci. 38(9) (2017) 3807-3815. [5] Y.M. Li, G.W. Gu, J.F. Zhao, H.Q. Yu, Y.L. Qiu, Y.Z. Peng, Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen, Chemosphere 52(6) (2003) 997-1005. [6] B. Li, Y.L. Sun, Y.Y. Li, Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR), Journal of Zhejiang University Science 6(11) (2005) 1115-11123. [7] W. Xue, E. Chao, G. Shun, Z.F. Qiu, Q. Sui, Coking wastewater treatment for industrial reuse purpose:Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis, J. Environ. Sci. 25(8) (2013) 1565-1574. [8] X. Hu, L. Xie, H. Shim, S.F. Zhang, D.H. Yang, Biological nutrient removal in a full scale anoxic/anaerobic/aerobic/pre-anoxic-MBR plant for low C/N ratio municipal wastewater treatment, Chinese. J. Chem. Eng. 22(4) (2014) 447-454. [9] Y. Wei, W. Zhan, S. Peng, The cake layer formation in the early stage of filtration in MBR:Mechanism and model, J. Membr. Sci. 559(2018) 75-86. [10] M. Bodzek, J. Bohdziewicz, M. Kowalska, Immobilized enzyme membranes for phenol and cyanide decomposition, J. Membr. Sci. 113(2) (1996) 373-384. [11] M. Kowalska, M. Bodzek, J. Bohdziewicz, Biodegradation of phenols and cyanides using membranes with immobilized microorganisms, Prog. Biotechnol. 33(2) (1998) 189-197. [12] W.T. Zhao, X. Huang, D.J. Lee, M. He, Y. Yuan, Feasibility study on coke wastewater treatment using membrane bioreactor (MBR) system with complete sludge retention, Environ. Sci. 30(11) (2009) 3316-3323. [13] Y. Ren, C.H. Wei, C.F. Wu, G.B. Li, Analysis of water quality composition and environmental and biological characteristics of coking wastewater, Environ. Chem. 27(7) (2007) 1094-1100. [14] D. Su, P.J. Li, S. Frank, X.Z. Xiong, Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite, J. Environ. Sci. 18(6) (2006) 1204-1209. [15] Y.L. Qu, M.Y. Li, X.D. Zhai, Advanced treatment technology of coking wastewater and its present status, Industrial Water Treatment 35(1) (2015) 14-17. [16] X.W. Jin, E.C. Li, S.G. Lu, Z.F. Qiu, Q. Sui, Coking wastewater treatment for industrial reuse purpose:Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis, J. Environ. Sci. 25(8) (2013) 1565. [17] Q. Li, M. Elimelech, Organic fouling and chemical cleaning of nanofiltration membranes:Measurements and mechanisms, Environ. Sci. Technol. 38(17) (2004) 4683-4693. [18] H.S. Oh, C.H. Tan, J.H. Low, A.G. Fane, Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes, Water Res. 112(2017) 29-37. [19] J.S. Vrouwenvelder, D.V.D. Kooij, Diagnosis, prediction and prevention of biofouling of NF and RO membranes, Desalination 139(1-3) (2001) 65-71. [20] K. Kimura, Y. Oki, Efficient control of membrane fouling in MF by removal of biopolymers:Comparison of various pretreatments, Water Res. 115(2017) 172-179. [21] K. Kimura, K. Shikato, Y. Oki, K. Kume, S. A.Huber, Surface water biopolymer fractionation for fouling mitigation in low-pressure membranes, J. Environ. Sci. 554(15) (2018) 83-89. [22] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis:Principles, applications, and recent developments, J. Environ. Sci. 281(1-2) (2006) 70-87. [23] S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis:Opportunities and challenges, J. Environ. Sci. 396(1) (2012) 1-21. [24] E.R. Cornelissen, D. Harmsen, E.F. Beerendonk, J.J. Qin, H. Oo, K.F.D. Korte, J.W.M.N. Kappelhof, The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater, Water Sci. Technol. 63(8) (2011) 1557-1565. [25] A. Achilli, T.Y. Cath, E.A. Marchand, A.E. Childress, The forward osmosis membrane bioreactor:A low fouling alternative to MBR processes, Desalination 239(1) (2009) 10-21. [26] M.A. Shannon, J.G. Georgiadis, B.J. Marias, A.M. Mayes, et al., Science and technology for water purification in the coming decades, Nature 452(7185) (2008) 301-310. [27] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis:Principles, applications, and recent developments, J. Membr. Sci. 281(1) (2006) 70-87. [28] J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, J. Membr. Sci. 318(1) (2008) 458-466. [29] Q. Wei, S. Qiao, B. Sun, S. Lei, Study on the treatment of simulated coking wastewater by O3 and O3/Fenton processes in a rotating packed bed, RSC Adv. 5(113) (2015) 93386-93393. [30] B. Kim, G. Gwak, S. Hong, Review on methodology for determining forward osmosis (FO) membrane characteristics:Water permeability (A), solute permeability (B), and structural parameter (S), Desalination 422(2017) 5-16. [31] A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci. 367(1-2) (2011) 340-352. [32] I. Sutzkover, D. Hasson, R. Semiat, Simple technique for measuring the concentration polarization level in a reverse osmosis system, Desalination 131(1) (2000) 117-127. [33] J.R. McCutcheon, R.L. McGinnis, M. Elimelech, Desalination by ammonia-carbon dioxide forward osmosis:Influence of draw and feed solution concentrations on process performance, J. Membr. Sci. 278(1) (2006) 114-123. [34] K. L. Lee, R. W. Baker, H. K, Lonsdale. Membrane for power generation by pressure retarded osmosis, J. Membr. Sci. 8(2) (1981) 141-171. [35] V.M.M. Lobo, Mutual diffusion coefficients in aqueous electrolyte solutions, Pure Appl. Chem. 65(12) (1993) 2613-2640. [36] Q.Y. Wu, Z.G. Zhong, L. Yang, D. Liu, Review on draw solution in forward osmosis process, Environ. Sci. Technol. 38(6) (2015) 139-145. [37] G.D. Mehta, S. Loeb, Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded, J. Membr. Sci. 4(00) (1978) 261-265. [38] M. Xie, W.E. Price, D.N. Long, M. Elimelech, Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis, J. Membr. Sci. 438(7) (2013) 57-64. [39] A.V. Raghunathan, N.R. Aluru, Molecular understanding of osmosis in semipermeable membranes, Phys. Rev. Lett. 97(2) (2006), 024501. [40] Y. Wang, L. Liu, J. Xue, J.M. Hou, D. Li, H.H. Wang, Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid, AICHE J. 64(2018) 2181-2188. [41] J.N. Israelachvili, Intermolecular and surface forces:With applications to colloidal and biological systems, Q. Rev. Biol. 63(1) (1985) 77. [42] B. Kim, G. Gwak, S. Hong, Review on methodology for determining forward osmosis (FO) membrane characteristics:Water permeability (A), solute permeability (B), and structural parameter (S), Desalination 422(2017) 5-16. [43] J.R. Mccutcheon, R.L. Mcginnis, M. Elimelech, Desalination by ammonia-carbon dioxide forward osmosis:Influence of draw and feed solution concentrations on process performance, J. Membr. Sci. 278(1) (2006) 114-123. [44] M. Sauchelli, G. Pellegrino, A. D'Haese, Transport of trace organic compounds through novel forward osmosis membranes:Role of membrane properties and the draw solution, Water Res. 141(15) (2018) 65-73. [45] K.L. Lee, R.W. Baker, H.K. Lonsdale, Membrane for power generation by pressure retarded osmosis, J. Membr. Sci. 8(2) (1981) 141-171. [46] L.D. Nghiem, S. Hawkes, V. Chen, Effects of membrane fouling on the nanofiltration of trace organic contaminants, Desalination 236(1) (2007) 273-281. [47] M. Xie, D.N. Long, W.E. Price, M. Elimelech, Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis, Water Res. 46(8) (2012) 2683-2692. [48] M. Khayet, J.I. Mengual, T. Matsuura, Porous hydrophobic/hydrophilic composite membranes application in desalination using direct contact membrane distillation, J. Membr. Sci. 252(1) (2005) 101-113. [49] M. Xie, D.N. Long, W.E. Price, M. Elimelech, Relating rejection of trace organic contaminants to membrane properties in forward osmosis:Measurements, modelling and implications, Water Res. 49(2) (2014) 265-274. [50] A.H. Hawari, N. Kamal, A. Altaee, Combined influence of temperature and flow rate of feeds on the performance of forward osmosis, Desalination 398(2016) 98-105. [51] S. Phuntsho, S. Sahebi, T. Majeed, Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process, Chem. Eng. J. 231(3) (2013) 484-496. [52] G.T. Gray, J.R. Mccutcheon, M. Elimelech, Internal concentration polarization in forward osmosis:Role of membrane orientation, Desalination 197(1-3) (2006) 1-8. [53] Q. She, R. Wang, A.G. Fane, C.Y. Tang, Membrane fouling in osmotically driven membrane processes:A review, J. Membr. Sci. 499(2016) 201-233. [54] X. Ming, D.N. Long, W.E. Price, M. Elimelech, Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis, Water Res. 47(13) (2013) 4567-4575. [55] N.M. Mazlan, P. Marchetti, H.A. Maples, G. Boram, K. Santanu, A. Bismarck, G.L. Andrew, Organic fouling behaviour of structurally and chemically different forward osmosis membranes-a study of cellulose triacetate and thin film composite membranes, J. Membr. Sci. 520(2016) 247-261. [56] D.K. Wang, X. Zhang, J.C.D.D. Costa, Claisen-type degradation mechanism of cellulose triacetate membranes in ethanol-water mixtures, J. Membr. Sci. 454(2014) 119-125. [57] H.L. Gray, T.F. Murray, C.J. Staud, Effect of aniline on cellulose triacetate, J. Amer. Chem. Soc. 51(6) (1929) 1810-1814. |