[1] M. Elimelech,W.A. Phillip, The future of seawater desalination: Energy, technology, and the environment, Science 333 (2011) 712-717.[2] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology forwater purification in the coming decades, Nature 452 (2008) 301-310.[3] R.L. McGinnis, M. Elimelech, Global challenges in energy and water supply: The promise of engineered osmosis, Environ. Sci. Technol. 42 (2008) 8625-8629.[4] G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol. 38 (2004) 11-41.[5] C. Fritzmann, J. Löwenberg, T.Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination 216 (2007) 1-76.[6] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment II: hybrid methods, Adv. Environ. Res. 8 (2004) 553-597.[7] A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies, Desalination 221 (2008) 47-69.[8] C. Liu, J. Heo, Local heating from silver nanoparticles and its effect on the Er3+ upconversion in oxyfluoride glasses, J. Am. Ceram. Soc. 93 (2010) 3349-3353.[9] T. Matsuura, Progress in membrane science and technology for seawater desalination—A review, Desalination 134 (2001) 47-54.[10] T.Y. Cath, A.E. Childress,M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci. 281 (2006) 70-87.[11] T.S. Chung, S. Zhang, K.Y. Wang, J. Su,M.M. Ling, Forward osmosis processes: Yesterday, today and tomorrow, Desalination 287 (2012) 78-81.[12] A. Achilli, T.Y. Cath, A.E. Childress, Selection of inorganic-based draw solutions for forward osmosis applications, J. Membr. Sci. 364 (2010) 233-241.[13] K. Gawel, D. Barriet, M. Sletmoen, B.T. Stokke, Responsive hydrogels for label-free signal transduction within biosensors, Sensors 10 (2010) 4381-4409.[14] J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process, Desalination 174 (2005) 1-11.[15] J.R. McCutcheon, R.L. McGinnis, M. Elimelech, Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance, J. Membr. Sci. 278 (2006) 114-123.[16] R.L. McGinnis, M. Elimelech, Energy requirements of ammonia-carbon dioxide forward osmosis desalination, Desalination 207 (2007) 370-382.[17] S. Phuntsho, H. Shon, S. Hong, S. Lee, S. Vigneswaran, J. Kandasamy, Fertiliser drawn forward osmosis desalination: the concept, performance and limitations for fertigation, Rev. Environ. Sci. Biotechnol. 11 (2012) 147-168.[18] S. Phuntsho, H.K. Shon, S. Hong, S. Lee, S. Vigneswaran, A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions, J. Membr. Sci. 375 (2011) 172-181.[19] J. Yaeli, Method and apparatus for processing liquid solutions of suspensions particularly useful in the desalination of saline water, Google Pat. (1992).[20] J.O. Kessler, C.D. Moody, Drinking water from sea water by forward osmosis, Desalination 18 (1976) 297-306.[21] K. Stache, Apparatus for transforming sea water, brackish water, polluted water or the like into a nutritious drink by means of osmosis. Google Pat. (1989).[22] Q. Ge, J. Su, G.L. Amy, T.-S. Chung, Exploration of polyelectrolytes as draw solutes in forward osmosis processes, Water Res. 46 (2012) 1318-1326.[23] Q. Ge, P. Wang, C. Wan, T.-S. Chung, Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment, Environ. Sci. Technol. 46 (2012) 6236-6243.[24] Q. Ge, J. Su, T.-S. Chung, G. Amy, Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes, Ind. Eng. Chem. Res. 50 (2010) 382-388.[25] M.M. Ling, K.Y. Wang, T.-S. Chung, Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse, Ind. Eng. Chem. Res. 49 (2010) 5869-5876.[26] Q. Ge, T.-S. Chung, Hydroacid complexes: A new class of draw solutes to promote forward osmosis (fo) processes, Chem. Commun. 49 (2013) 8471-8473.[27] C.X. Guo, D. Zhao, Q. Zhao, P.Wang, X. Lu, Na+-functionalized carbon quantumdots: a new draw solute in forward osmosis for seawater desalination, Chem. Commun. 50 (2014) 7318-7321.[28] C.X. Guo, S. Huang, X. Lu, A solventless thermolysis route to large-scale production of ultra-small hydrophilic and biocompatible magnetic ferrite nanocrystals and their application for efficient protein enrichment, Green Chem. 16 (2014) 2571-2579.[29] D. Zhao, P.Wang, Q. Zhao, N. Chen, X. Lu, Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation, Desalination 348 (2014) 26-32.[30] Q. Zhao, N. Chen, D. Zhao, X. Lu, Thermoresponsive magnetic nanoparticles for seawater desalination, ACS Appl. Mater. Interfaces 5 (2013) 11453-11461.[31] H. Han, J.Y. Lee, X. Lu, Thermoresponsive nanoparticles + plasmonic nanoparticles = photoresponsive heterodimers: Facile synthesis and sunlightinduced reversible clustering, Chem. Commun. 49 (2013) 6122-6124.[32] S. Chen, C.X. Guo, Q. Zhao, X. Lu, One-pot synthesis of CO2-responsivemagnetic nanoparticles with switchable hydrophilicity, Chem. Eur. J. 43 (2014) 14057-14062.[33] S.N. Baker, G.A. Baker, Luminescent carbon nanodots: Emergent nanolights, Angew. Chem. Int. Ed. 49 (2010) 6726-6744.[34] L. Zhou, Y. Lin, Z. Huang, J. Ren, X. Qu, Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices, Chem. Commun. 48 (2012) 1147-1149.[35] S.Qu, X. Wang,Q. Lu, X. Liu, L. Wang, A biocompatible fluorescent ink based on watersoluble luminescent carbon nanodots, Angew. Chem. Int. Ed. 51 (2012) 12215-12218.[36] C.X. Guo, J. Xie, B.Wang, X. Zheng, H.B. Yang, C.M. Li, A newclass of fluorescent-dots: long luminescent lifetime bio-dots self-assembled from DNA at low temperatures, Sci. Rep. 3 (2013).[37] L. Lin, S. Zhang, Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes, Chem. Commun. 48 (2012) 10177-10179.[38] Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitationindependent emission, Angew. Chem. Int. Ed. 52 (2013) 7800-7804.[39] C.X. Guo, Y. Dong, H.B. Yang, C.M. Li, Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting, Adv. Energy Mater. 3 (2013) 997-1003.[40] P. McCormick, J. Pellegrino, F. Mantovani, G. Sarti,Water, salt, and ethanol diffusion through membranes for water recovery by forward (direct) osmosis processes, J. Membr. Sci. 325 (2008) 467-478.[41] D. Li, X. Zhang, J. Yao, G.P. Simon, H.Wang, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination, Chem. Commun. 47 (2011) 1710-1712.[42] K. Chon, J. Cho, H.K. Shon, Fouling characteristics of a membrane bioreactor and nanofiltration hybrid system for municipal wastewater reclamation, Bioresour. Technol. 130 (2013) 239-247.[43] N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage, Chem. Soc. Rev. 38 (2009) 2532-2542.[44] R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater. 22 (2010) 2729-2742.[45] Z. Li, S.X. Wang, Q. Sun, H.L. Zhao, H. Lei, M.B. Lan, Z.X. Cheng, X.L. Wang, S.X. Dou, G.Q. Lu, Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging, Adv. Healthc. Mater. 2 (2013) 958-964.[46] A. Pourjavadi, S.H. Hosseini, F. Matloubi Moghaddam, B. Koushki Foroushani, C. Bennett, Tungstate based poly(ionic liquid) entrapped magnetic nanoparticles: a robust oxidation catalyst, Green Chem. 15 (2013) 2913-2919.[47] S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124 (2002) 8204-8205.[48] Q. Ge, M. Ling, T.-S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future, J. Membr. Sci. 442 (2013) 225-237.[49] M.M. Ling, T.S. Chung, X. Lu, Facile synthesis of thermosensitive magnetic nanoparticles as "smart" draw solutes in forward osmosis, Chem. Commun. 47 (2011) 10788-10790.[50] T.H. Larsen,M. Sigman, A. Ghezelbash, R.C. Doty, B.A. Korgel, Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor, J. Am. Chem. Soc. 125 (2003) 5638-5639.[51] D. Amara, J. Grinblat, S. Margel, Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres, J. Mater. Chem. 22 (2012) 2188-2195.[52] M. Noh, Y. Mok, S. Lee, H. Kim, S.H. Lee, G.W. Jin, J.H. Seo, H. Koo, T.H. Park, Y. Lee, Novel lower critical solution temperature phase transitionmaterials effectively control osmosis by mild temperature changes, Chem. Commun. 48 (2012) 3845-3847.[53] A. Razmjou, G.P. Simon, H. Wang, Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent, Chem. Eng. J. 215-216 (2013) 913-920.[54] M.M. Ling, T.S. Chung, Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes, J. Membr. Sci. 372 (2011) 201-209.[55] M.M. Ling, T.S. Chung, Surface-dissociated nanoparticle draw solutions in forward osmosis and the regeneration in an integrated electric field and nanofiltration system, Ind. Eng. Chem. Res. 51 (2012) 15463-15471.[56] H.G. Schild, Poly(N-isopropylacrylamide): Experiment, theory and application, Prog. Polym. Sci. 17 (1992) 163-249. |