[1] K.M. Gangawane, H.F. Oztop, M.E. Ali, Mixed convection in a lid-driven cavity containing triangular block with constant heat flux:Effect of location of block, Int. J. Mech. Sci. 152(2019) 492-511. [2] K.M. Gangawane, H.F. Oztop, N. Abu-Hamdeh, Mixed convection characteristic in a lid-driven cavity containing heated triangular block:Effect of location and size of block, Int. J. Heat Mass Transf. 124(2018) 860-875. [3] A. Boutra, K. Ragui, Y.K. Benkahla, Numerical study of mixed convection heat transfer in a lid-driven cavity filled with a nanofluid, Mechanics and Industry 16(2015) 505. [4] A. Boutra, K. Ragui, Y.K. Benkahla, N. Labsi, Mixed convection of a Bingham fluid in differentially heated square enclosure with partitions, Theoretical Foundations of Chemical Engineering Journal 52(2) (2018) 286-294. [5] K.M. Gangawane, S. Gupta, Mixed convection characteristics in rectangular enclosure containing heated elliptical block:Effect of direction of moving wall, Int. J. Therm. Sci. 130(2018) 100-115. [6] M. Manchanda, K.M. Gangawane, Mixed convection in a two-sided lid-driven cavity containing heated triangular block for non-Newtonian power-law fluids, Int. J. Mech. Sci. 144(2018) 235-348. [7] K.M. Gangawane, B. Manikandan, Laminar natural convection characteristics in an enclosure with heated hexagonal block for non-Newtonian power law fluids, Chin. J. Chem. Eng. 25(5) (2017) 555-571. [8] K.M. Gangawane, B. Manikandan, Mixed convection characteristics in lid-driven cavity containing heated triangular block, Chin. J. Chem. Eng. 25(10) (2017) 1381-1394. [9] K.M. Gangawane, Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux:Effect of Prandtl and Grashof numbers, Int. J. Heat Mass Transf. 105(2017) 34-57. [10] A. Ababaei, M. Abbaszadeh, A. Arefmanesh, A.J. Chamkha, Numerical Simulation of Double-diffusive Mixed Convection and Entropy Generation in a Lid-Driven Trapezoidal Enclosure with a Heat Source, Numerical Heat Transfer, Part A, Applications 73(10) (2018) 702-720. [11] F.Selimefendigil,H.F.Oztop, A.J.Chamkha,Analysisofmixedconvectionof nanofluid ina 3Dlid-driventrapezoidal cavity with flexiblesidesurfacesand inner cylinder, International Communications in Heat and Mass Transfer 87(2017) 40-51. [12] M. Borhan Uddin, M.M. Rahman, M.A.H. Khan, Hydromagnetic double-diffusive unsteady mixed convection in a trapezoidal enclosure due to uniform and nonuniform heating at the bottom side, numerical heat transfer, Part A:Applications 68(2015) 205-224. [13] M.A. Ismael, A.J. Chamkha, Mixed convection in lid-driven trapezoidal cavities with an aiding or opposing side wall, Numerical Heat Transfer, Part A:Applications 68(2015) 312-335. [14] R. Ul Haq, F.A. Soomro, H.F. Oztop, T. Mekkaoui, Thermal management of waterbased carbon nanotubes enclosed in a partially heated triangular cavity with heated cylindrical obstacle, Int. J. Heat Mass Transf. 131(2019) 724-736. [15] A.K. Hussein, Entropy generation due to the transient mixed convection in a threedimensional right-angle triangular cavity, Int. J. Mech. Sci. 146(2018) 141-151. [16] M. Roy, P. Biswal, S. Roy, T. Basak, Heat flow visualization during mixed convection within entrapped porous triangular cavities with moving horizontal walls via heatline analysis, Int. J. Heat Mass Transf. 108(2017) 468-489. [17] K. Ragui, A. Boutra, Y.K. Benkahla, N. Labsi, M. Feddaoui, TiO2-water nanofluid within a tilted triangular enclosure including a square heater:optimum heat transfer, Mechanics and Industry 17(6) (2016) 612. [18] B. Ghasemi, S.M. Aminossadati, Mixed convection in a lid-driven triangular enclosure filled with nanofluids, International Communications in Heat and Mass Transfer 37(2010) 1142-1148. [19] R. Glowinski, T. Guidoboni, W. Pan, Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity, Journal of Computational Physics 216(1) (2006) 76-91. [20] M. Sheikholeslami, S.A.M. Mehryan, A. Shafee, M.A. Sheremet, Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity, J. Mol. Liq. 277(2019) 388-396. [21] D.N. Korres, C. Tzivanidis, Development of two new semi-empirical formulas for estimation of solar absorptance in circular cavity receivers, Thermal Science and Engineering Progress 10(2019) 147-153. [22] F. Prez-Flores, C. Trevino, I.Y. Rosas, F. Solorio, L. Martinez-Suastegui, Transient mixed convection in a channel with two facing discretely heated semicircular cavities:Buoyancy, inclination angle, and channel aspect ratio effects, Experimental Heat Transfer 32(4) (2019) 337-363. [23] Mei-Hsia Chang, Chin-Hsiang Cheng, Buoyancy-induced flow and convective heat transfer in an inclined arc-shape enclosure, International Communications in Heat and Mass Transfer 26(6) (1999) 829-838. [24] Chin-Lung Chen, Chin-Hsiang Cheng, Buoyancy-induced flow and convective heat transfer in an inclined arc-shape enclosure, Int. J. Heat Fluid Flow 23(2002) 823-830. [25] Chin-Lung Chen, Chin-Hsiang Cheng, Numerical prediction of buoyancy-induced periodic pattern and heat transfer in a lid-driven arc-shape cavity, Numerical Heat Transfer, Part A:Applications 44(2003) 645-663. [26] Chin-Lung Chen, Chin-Hsiang Cheng, Experimental and numerical study of mixed convection and flow pattern in a lid-driven arc-shape cavity, Heat Mass Transf. 41(2004) 58-66. [27] Chin-Lung Chen, Chin-Hsiang Cheng, Buoyancy-induced periodic flow and heat transfer in lid-driven cavities with different cross-sectional shapes, International Communications in Heat and Mass Transfer 32(2005) 483-490. [28] Chin-Lung Chen, Chin-Hsiang Cheng, Numerical study of effects of inclination on buoyancy-induced flow oscillation in a lid-driven arc-shaped cavity, Numerical Heat Transfer, Part A:Applications 48(2005) 77-97. [29] Chin-Lung Chen, Chin-Hsiang Cheng, Numerical study of flow and thermal behavior of lid-driven flows in cavities of small aspect ratios, Int. J. Numer. Methods Fluids 52(2006) 785-799. [30] Chin-Lung Chen, Chin-Hsiang Cheng, Periodic flow pattern and convection heat transfer in an arc-shaped cavity with oscillating lid, Numerical Heat Transfer, Part A:Applications 50(2006) 491-507. [31] Chin-Lung Chen, Chin-Hsiang Cheng, Numerical predictions of natural convection with liquid fluids contained in an inclined arc-shaped enclosure, International Communications in Heat and Mass Transfer 39(2012) 209-215. [32] Chin-Lung Chen, Yun-Chi Chung, Natural convection heat transfer in a nanofluid filled semi-annulus enclosure, International Communications in Heat and Mass Transfer 39(2012) 610-616. [33] Chin-Lung Chen, Yun-Chi Chung, Te-Fu Lee, Parametric study on mixed convection heat transfer in an inclined arc-shape cavity, International Communications in Heat and Mass Transfer 39(2012) 1563-1571. [34] Hatice Mercan, Kunt Atalik, Vortex formation in lid-driven arc-shape cavity flows at high Reynolds numbers, European Journal of Mechanics B-Fluids 28(2009) 61-71. [35] C. Ozalp, A. Pinarbasi, B. Sahin, Experimental measurement of flow past cavities of different shapes, Exp. Thermal Fluid Sci. 34(2010) 505-515. [36] H. Mercan, K. Atalik, Flow structure for power-law fluids in lid-driven arc-shape cavities, Korea-Australia Rheology Journal 23(2) (2011) 71-80. [37] M. Saleem, Md.A. Hossain, S.C. Saha, Mixed convection flow of micropolar fluid in an open ended arc-shape cavity, Journal of Fluids Engineering 134(2012) 091101. [38] S. Soleimani, M. Sheikholeslami, D.D. Ganji, M. Gorji-Bandpay, Natural convection heat transfer in a nanofluid filled semi-annulus enclosure, International Communications in Heat and Mass Transfer 39(2012) 565-574. [39] F. Yang, X. Shi, X. Guo, Q. Sai, MRT lattice Boltzmann schemes for high Reynolds number flow in two-dimensional lid-driven semi-circular cavity, Energy Procedia 16(2012) 639-644. [40] F. Selimefendigil, H.F. Oztop, Numerical analysis of laminar pulsating flow at a backward facing step with an upper wall mounted adiabatic thin fin, Comput. Fluids 88(2013) 93-107. [41] A.M.J. Al-Zamily, Effect of magnetic field on natural convection in a nanofluid-filled semi-circular enclosure with heat flux source, Comput. Fluids 103(2014) 71-85. [42] Z. Dai, Z. Zheng, D.F. Fletcher, B.S. Haynes, Experimental study of transient behaviour of laminar flow in zigzag semi-circular microchannels, Exp. Thermal Fluid Sci. 68(2015) 644-651. [43] Shuang-Ying Wu, Zu-Guo Shen, Lan Xiao, De-Lei Li, Experimental study on combined convective heat loss of a fully open cylindrical cavity under wind conditions, Int. J. Heat Mass Transf. 83(2015) 509-521. [44] S. Mojumder, Khan Md. Rabbi, S. Saha, M.N. Hasan, S.C. Saha, Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semicircular bottom heater having different ferrofluid inside, Journal of Magnetism and Magnetic Materials 407(2016) 412-424. [45] M. Tahari, A. Ghorbanian, M. Hatami, D. Jing, Physical effect of a variable magnetic field on the heat transfer of a nanofluid-based concentrating parabolic solar collector, The European Physical Journal Plus 132(2017) 549. [46] Abd el m. Bouchoucha, R. Bessaih, H.F. Oztop, K. Al-Salem, F. Bayrak, Physical effect of a variable magnetic field on the heat transfer of a nanofluid-based concentrating parabolic solar collector, The European Physical Journal Plus 132(2017) 549. [47] A. Msaddaka, E. Sedikia, M. Ben Salah, Assessment of thermal heat loss from solar cavity receiver with lattice Boltzmann method, Sol. Energy 173(2018) 1115-1125. [48] E. Bellos, C. Tzivanidis, Alternative designs of parabolic trough solar collectors, Prog. Energy Combust. Sci. 71(2019) 81-117. [49] Z. Si-Quan, L. Xin-Feng, D. Liu, M. Qing-Song, A numerical study on optical and thermodynamic characteristics of a spherical cavity receiver, Prog. Energy Combust. Sci. 71(2019) 81-117. |