[1] C.J. Schuster-Wallace, M. Qadir, Z. Adeel, S.K. Dickin, Putting Water and Energy at the Heart of Sustainable Development, UHN-INWEH Reports, United Nations University, Canada, 2015, http://inweh.unu.edu. [2] V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, Overview on the developments of microbial fuel cells, Biochem. Eng. J. 17(2013) 53-64. [3] V.M. Ortiz-Martínez, M.J. Salar-Garcí, A.P. de los Ríos, F.J. Hernández-Fernánde, J.A. Egea, L.J. Lozano, Development in microbial fuel cell modelling, Chem. Eng. J. 271(2015) 50-60. [4] J. Chouler, G.A. Padgett, P.J. Cameron, K. Preuss, M.M. Titirici, I. Ieropoulos, M. Di Lorenzo, Towards effective small-scale microbial fuel cells for energy generation from urine, Electrochim. Acta 192(2016) 89-98. [5] S. Choi, Micro scale microbial fuel cells:advances and challenges, Biosens. Bioelectron. 69(2015) 8-25. [6] M. Zhou, H. Wang, D.J. Hassett, T. Gu, Recent advances in microbial fuel cells (MFCs) and microbial electrolysis celss (MECs) for wastewater treatment, bioenergy and bioproducts, J. Chem. Technol. Biotechnol. 88(4) (2013) 508-518. [7] M.H. Do, H.H. Ngo, W.S. Guo, Y. Liu, S.W. Chang, D.D. Nguyen, L.D. Nghiem, B.J. Ni, Challenges in the application of microbial fuel cells to wastewater treatment and energy production:a mini review, Sci. Total Environ. 639(2018) 910-920. [8] A.G. Capodaglio, D. Molognoni, A. Callegari, Formulation and preliminary application of an integrated model of microbial fuel cell process, Proc. 29th Eur. Conf. Model. Simul. ECMS 8(2015) (2015) 340-344. [9] Q. Wen, Y. Wu, D. Cao, L. Zhao, Q. Sun, Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater, Bioresour. Technol. 100(2009) 4171-4175. [10] Y. Zeng, Y.F. Choo, B.H. Kim, P. Wu, Modelling and simulation of two-chamber microbial fuel cell, J. Power Source 195(2010) 79-89. [11] R.P. Pinto, B. Srinivasan, M.F. Manuel, B. Tartakovsky, A two-population bioelectrochemical model of a microbial fuel cell, Bioresour. Technol. 101(2010) 5256-5265. [12] J.R.Kim,H.C.Boghani,N.Amini,K.F.Aguey-Zinsou,I.Michie,R.M.Dinsdale,A.J.Guwy,Z. X. Guo, G.C. Premier, Porous anodes with helical flow pathways in bioelectrochemical systems:the effects of fluid dynamics and operating regimes, J. Power Sources 213(2012) 382-390. [13] V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, A 1D mathematical model for a microbial fuel cell, Energy 61(2013) 463-471. [14] R. Shankar, P. Mondal, S. Chand, Modelling and simulation of double chamber microbial fuel cell:cell voltage, power density and temperature variation with process parameters, Green 3(2013) 181-194. [15] D. Recio-Garrido, M. Perrier, B. Tartakovsky, Parameter Estimation of a Microbial Fuel Cell Process Control-oriented Model, 22nd Mediterr, Conf. Control Autom, MED, (2014) 918-923. [16] M. Esfandyari, M.A. Fanaei, R. Gheshlaghi, M. Akhavan Mahdavi, Dynamic modeling of a continuous two-chamber microbial fuel cell with pure culture of Shewanella, Int. J. Hydrog. Energy 42(2017) 21198-21202. [17] Z.Z. Ismail, A.A. Habeeb, Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers renew, Energy 101(2016) 1256-1265. [18] M.M. Mardanpour, S. Yaghmaei, M. Kalantar, Modeling of micro-fluidic microbial fuel cells using quantitative bacterial transport parameters, J. Power Sources 342(2017) 1017-1031. [19] H. Lin, S. Wu, J. Zhu, Modeling power generation and energy efficiencies in air cathode microbial fuel cells based on Freter equations, App. Sci. 8(10) (2018) 1983. [20] X. Zhang, A. Halme, Modelling of a microbial fuel cell process, Biotechnol. Lett. 17(1995) 809-814. [21] A. kato arcus, C.I. Torres, B.E. Rittmann, Conduction based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng. 98(2007) 1171-1182. [22] C. Picioreanu, I.M. Head, K.P. Katuri, M.C.M. van Loosdrecht, K. Scott, A computational model for biofilm-based microbial fuel cells, Water Res. 41(2007) 2921-2940. [23] C. Picioreanu, K.P. Katuri, I.M. Head, M.C.M. Van Loosdrecht, K. Scott, Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion, Water Sci. Technol. 57(2008) 965-971. [24] F. Harnisch, R. Warmbier, R. Schneider, U. Schröder, Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems, Bioelectrochemistry 75(2009) 136-141. [25] C. Picioreanu, M.C.M. van Loosdrecht, T.P. Curtis, K. Scott, Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance, Bioelectrochemistry 78(2010) 8-24. [26] B.V. Merkey, D.L. Chopp, The performance of a microbial fuel cell depends strongly on anode geometry:a multidimensional modeling study, Bull. Math. Biol. 74(2012) 834-857. [27] F. Fang, G. Zang, M. Sun, H. Yu, Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach, Appl. Energy 110(2013) 98-103. [28] R. Sedaqatvand, M. Nasr Esfahany, T. Behzad, M. Mohseni, M.M. Mardanpour, Parameter estimation and characterization of a single-chamber microbial fuel cell for dairy wastewater treatment, Bioresour. Technol. 146(2013) 247-253. [29] N. Jayasinghe, A. Franks, K.P. Nevin, R. Mahadevan, Metabolic modelling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation, Biotechnol. J. 9(10) (2014) 1350-1361. [30] B. Sirinutsomboon, Modeling of a membraneless single-chamber microbial fuel cell with molasses as an energy source, Int. J. Energy Environ. Eng. 5(93) (2014) 1-9. [31] M. Esfandyari, M.A. Fanaei, R. Gheshlaghi, Mathematical modeling of two-chamber batch microbial fuel cell with pure culture of Shewanella, Chem. Eng. Res. Des. 117(2017) 34-42. [32] L. Woodward, M. Perrier, B. Srinivasan, B. Tartakovsky, Maximizing power production in a stack of microbial fuel cells using multiunit optimization method, Biotechnol. Prog. 25(2009) 676-682. [33] S. Attarsharghi, L. Woodward, O. Akhrif, An improved maximum power extraction scheme for microbial fuel cells, IECON 2012, 38th Annu. Conf. IEEE Ind. Electron. Soc. (2012) 910-915. [34] H.C. Boghani, J.R. Kim, R.M. Dinsdale, A.J. Guwy, G.C. Premier, Control of power sourced from a microbial fuel cell reduces its start-up time, increases bioelectrochemical activity, Bioresour. Technol. 140(2013) 277-285. [35] A. Kebir, L. Woodward, O. Akhrif, Extremum-seeking control with anticipative action of microbial fuel cell's power, 23rd Mediterr. Conf. Control Autom. June 16-19(2015), pp. 933-939. [36] A. Kebir, O. Akhrif, L. Woodward, Extremum-seeking control of a microbial fuel cell power using adaptive excitation, IECON 2016-42nd Annu. Conf. IEEE Ind. Electron. Soc. 3(2016), pp. 4127-4132. [37] A. An, J. Wang, H. Zhang, G. Yang, Dynamics analysis of a microbial fuel cell system and pid control of its power and current based on the critical proportion degree method, Envirom Engg Manage J. 14(8) (2015) 1821-1828. [38] M. Yan, L. Fan,, Constant voltage output in two-chamber, microbial fuel cell under fuzzy PID control, Int. J. Electrochem. Sci. 8(2013) 3321-3332. [39] H.C. Boghani, I. Michie, R.M. Dinsdale, A.J. Guwy, G.C. Premier, Control of microbial fuel cell voltage using a gain scheduling control strategy, J. Power Sources 322(2016) 106-115. [40] D. Recio-Garrido, M. Perrier, B. Tartakovsky, Modeling, optimization and control of bioelectrochemical systems, Chem. Eng. J. 289(2016) 180-190. [41] R. Patel, D. Deb, Parametrized control-oriented mathematical model and adaptive backstepping control of a single chamber single population microbial fuel cell, J. Power Sources 396(2018) 599-605. [42] A. Yewale, R. Methekar, S. Agrawal, Dynamic analysis and multiple model of cotnrol of continuous microbial fuel cell (CMFC), Chem. Engg. Res. Des. 148(2019) 403-416. [43] R.N. Methekar, V. Prasad, R.D. Gudi, Dynamic analysis and linear control strategies for proton exchange membrane fuel cell using a distributed parameter model, J. of Power Sources 165(1) (2007) 152-170. [44] A.L. Fradkov, I.V. Miroshnik, V.O. Nikiforov, Nonlinear and Adaptive Control of Complex Systems, Springer Science Business Media, Netherlands, Dordrecht, 1999. [45] G. Grimholt, S. Skogestad, Optimal PID control of double integrating processes, 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems; NTNU, Trondheim, Norway, June 6-8, 2016. [46] S. Patwardhan, S. Manuja, S. Narsimhan, S. Shah, From data to diagnosis and control using generalized orthonormal basis filters. Part II:model predictive and fault tolerant control, J. Process Control 16(2006) 157-175. [47] R. Methekar, Advanced Control of PEMFC Using Data Driven Models, Ph.D. thesis, IIT bombay, India, 2010. |