中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 255-271.DOI: 10.1016/j.cjche.2020.12.010
• Biomedical Engineering • 上一篇 下一篇
Qirui Tian1,2, Weiqing Zhou2,3, Qiong Cai1, Guanghui Ma2,3, Guoping Lian1,4
收稿日期:
2020-10-12
修回日期:
2020-12-02
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Guanghui Ma, Guoping Lian
基金资助:
Qirui Tian1,2, Weiqing Zhou2,3, Qiong Cai1, Guanghui Ma2,3, Guoping Lian1,4
Received:
2020-10-12
Revised:
2020-12-02
Online:
2021-02-28
Published:
2021-05-15
Contact:
Guanghui Ma, Guoping Lian
Supported by:
摘要: By the virtue of their olfactory, physicochemical, and biological characteristics, essential oils (EOs) have drawn wide attention as additives in daily chemicals like perfume or personal care products. Nevertheless, they are physicochemically unstable and susceptible to degradation or loss. Microencapsulation offers a feasible strategy to stabilize and prolong release of EO. This review summarizes the recognized benefits and functional properties of various preparation and characterization methods, wherein innovative fabrication strategies and their formation mechanisms are especially emphasized. Progress in combining detecting/measuring technologies with kinetic modelling are discussed, to give an integral approach of controlling the dynamic release of encapsulated EOs. Moreover, new development trends of EOs capsules are also highlighted.
Qirui Tian, Weiqing Zhou, Qiong Cai, Guanghui Ma, Guoping Lian. Concepts, processing, and recent developments in encapsulating essential oils[J]. 中国化学工程学报, 2021, 29(2): 255-271.
Qirui Tian, Weiqing Zhou, Qiong Cai, Guanghui Ma, Guoping Lian. Concepts, processing, and recent developments in encapsulating essential oils[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 255-271.
[1] I.T. Carvalho, B.N. Estevinho, L. Santos, Application of microencapsulated essential oils in cosmetic and personal healthcare products –A review, Int. J. Cosmetic. Sci. 38 (2016) 109–119. [2] R. Kaur, D. Kukkar, S.K. Bhardwaj, K.H. Kim, A. Deep, Potential use of polymers and their complexes as media for storage and delivery of fragrances, J. Control. Realease 285 (2018) 81–95. [3] A.M. Bakry, S. Abbas, B. Ali, H. Majeed, M.Y. Abouelwafa, A. Mousa, L. Liang, Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications, Compr. Rev. Food Sci. Food Saf. 15 (2016) 143–182. [4] A.E. Asbahani, K. Miladi, W. Badri, M. Sala, E.H.A. Addi, H. Casabianca, A.E. Mousadik, D. Hartmann, A. Jilale, F.N.R. Renaud, A. Elaissari, Essential oils: From extraction to encapsulation, Int. J. Pharm. 483 (2015) 220–243. [5] B.S. Jugreet, S. Suroowan, R.R.K. Rengasamy, M.F. Mahomoodally, Chemistry, bioactivities, mode of action and industrial applications of essential oils, Trends. Food. Sci. Technol. 101 (2020) 89–105. [6] F. Bakkali, S. Averbeck, D. Averbeck, M. Idaomar, Biological effects of essential oils –A review, Food Chem. Toxicol. 46 (2008) 446–475. [7] J. Hu, Z.B. Xiao, R.J. Zhou, S.S. Ma, Z. Li, M.X. Wang, Comparison of compounded fragrance and chitosan nanoparticles loaded with fragrance applied in cotton fabrics, Text. Res. J. 81 (2011) 2056–2064. [8] Y. Li, L. Ai, W. Yokoyama, C.F. Shoemaker, D. Wei, J. Ma, F. Zhong, Properties of chitosan-microencapsulated orange oil prepared by spray-drying and its stability to detergents, J. Agr. Food Chem. 61 (2013) 3311–3319. [9] S.O. Sohn, S.M. Lee, Y.M. Kim, J.H. Yeum, J.H. Choi, H.D. Ghim, Aroma finishing of PET fabrics with PVAc nanoparticles containing lavender oil, Fiber. Polym. 8 (2007) 163–167. [10] Z. Lu, T. Zhang, J. Yang, J. Wang, J. Shen, X. Wang, Z. Xiao, Y. Niu, G. Liu, X. Zhang, Effect of mesoporous silica nanoparticles-based nano-fragrance on the central nervous system, Eng. Life Sci. 20 (11) (2020) 535–540. [11] J. Rodríguez, M.J. Martín, M.A. Ruiz, B. Clares, Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives, Food Res. Int. 83 (2016) 41–59. [12] J. Giro-Paloma, M. Martínez, L.F. Cabeza, A.I. Fernández, Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review, Renew. Sust. Energ. Rev. 53 (2016) 1059–1075. [13] A. Ammari, K. Schroen, Flavor retention and release from beverages: a kinetic and thermodynamic perspective, J. Agr. Food Chem. 66 (2018) 9869–9881. [14] A. Sansukcharearnpon, S. Wanichwecharungruang, N. Leepipatpaiboon, T. Kerdcharoen, S. Arayachukeat, High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior, Int. J. Pharm. 391 (2010) 267–273. [15] Z. Xiao, W. Liu, G. Zhu, R. Zhou, Y. Niu, A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology, J. Sci. Food Agric. 94 (2014) 1482–1494. [16] K. Bruyninckx, M. Dusselier, Sustainable chemistry considerations for the encapsulation of volatile compounds in laundry-type applications, ACS Sustain. Chem. Eng. 7 (2019) 8041–8054. [17] L. He, J. Hu, W. Deng, Preparation and application of flavor and fragrance capsules, Polym. Chem. 9 (2018) 4926–4946. [18] L. Pavoni, D.R. Perinelli, G. Bonacucina, M. Cespi, G.F. Palmieri, An overview of micro-and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability, Nanomaterials 10 (2020) 135–158, Article 135. [19] W.C. Blocher, S.L. Perry, Complex coacervate-based materials for biomedicine, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9 (2017) e1442. [20] M. Zhao, C. Wang, H. Jiang, M.B. Dawadi, B.D. Vogt, D.A. Modarelli, N.S. Zacharia, Polyelectrolyte–micelle coacervates: intrapolymer-dominant vs. interpolymer-dominant association, solute uptake and rheological properties, Soft Matter 15 (2019) 3043–3054. [21] Y. Zhang, J. Ma, Q. Xu, Polyelectrolyte complex from cationized casein and sodium alginate for fragrance controlled release, Colloids Surf. B 178 (2019) 439–444. [22] G. Dardelle, M. Jacquemond, P. Erni, Delivery systems for low molecular weight payloads: core/shell capsules with composite coacervate/polyurea membranes, Adv. Mater. 29 (2017) 1606099–1606104. [23] R. Zhao, Z. Lu, J. Yang, L. Zhang, Y. Li, X. Zhang, Drug delivery system in the treatment of diabetes mellitus, Front. Bioeng. Biotechnol. 8 (2020) 880. [24] G.T. Vladisavljević, Recent advances in the production of controllable multiple emulsions using microfabricated devices, Particuology 24 (2016) 1–17. [25] M. Ali, S.P. Meaney, M.J. Abedin, P. Holt, M. Majumder, R.F. Tabor, Graphene oxide–silica hybrid capsules for sustained fragrance release, J. Colloid Interface Sci. 552 (2019) 528–539. [26] M. Stasse, T. Ribaut, V. Schmitt, V. Héroguez, Encapsulation of lipophilic fragrance by polymerization of the intermediate aqueous phase of an oil-inwater-in-oil (O/W/O) double emulsion, Polym. Chem. 10 (2019) 4154–4162. [27] M. Stasse, E. Laurichesse, T. Ribaut, O. Anthony, V. Héroguez, V. Schmitt, Formulation of concentrated oil-in-water-in-oil double emulsions for fragrance encapsulation, Colloids Surf. A Physicochem. Eng. Asp. 592 (2020) 124564–124576. [28] X. Na, W. Zhou, T. Li, D. Hong, J. Li, G. Ma, Preparation of double-emulsiontemplated microspheres with controllable porous structures by premix membrane emulsification, Particuology 44 (2019) 22–27. [29] R. Liang, S. Xu, C.F. Shoemaker, Y. Li, F. Zhong, Q. Huang, Physical and antimicrobial properties of peppermint oil nanoemulsions, J. Agr. Food Chem. 60 (2012) 7548–7555. [30] N. Terjung, M. Löffler, M. Gibis, J. Hinrichs, J. Weiss, Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials, Food Funct. 3 (2012) 290–301. [31] H. Majeed, Y.Y. Bian, B. Ali, A. Jamil, U. Majeed, Q.F. Khan, K.J. Iqbal, C.F. Shoemaker, Z. Fang, Essential oil encapsulations: uses, procedures, and trends, RSC Adv. 5 (2015) 58449–58463. [32] C.G. de Kruif, F. Weinbreck, R. de Vries, Complex coacervation of proteins and anionic polysaccharides, Curr. Opin. Colloid Interface Sci. 9 (2004) 340–349. [33] A. Madene, M. Jacquot, J. Scher, S. Desobry, Flavour encapsulation and controlled release –a review, Int. J. Food Sci. 41 (2006) 1–21. [34] W. Liu, X.D. Chen, C. Selomulya, On the spray drying of uniform functional microparticles, Particuology 22 (2015) 1–12. [35] R.V.D.B. Fernandes, S.V. Borges, D.A. Botrel, Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties, Food Sci. Technol. 33 (2013) 171–178. [36] H.C.F. Carneiro, R.V. Tonon, C.R.F. Grosso, M.D. Hubinger, Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials, J. Food Eng. 115 (2013) 443–451. [37] X. Dang, M. Yang, Z. Shan, S. Mansouri, B.K. May, X. Chen, H. Chen, M.W. Woo, On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release, Mater. Sci. Eng. C 74 (2017) 493–500. [38] S. Zhang, H. Lei, X. Gao, X. Xiong, W.D. Wu, Z. Wu, X.D. Chen, Fabrication of uniform enzyme-immobilized carbohydrate microparticles with high enzymatic activity and stability via spray drying and spray freeze drying, Powder Technol. 330 (2018) 40–49. [39] P. He, S.S. Davis, L. Illum, Chitosan microspheres prepared by spray drying, Int. J. Pharm. 187 (1999) 53–65. [40] O. Tzhayik, A. Cavaco-Paulo, A. Gedanken, Fragrance release profile from sonochemically prepared protein microsphere containers, Ultrason. Sonochem. 19 (2012) 858–863. [41] F. Casanova, B.N. Estevinho, L. Santos, Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery, Powder Technol. 297 (2016) 44–49. [42] L.R.G. Kumar, N.S. Chatterjee, C.S. Tejpal, K.V. Vishnu, K.K. Anas, K.K. Asha, R. Anandan, S. Mathew, Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies, Int. J. Biol. Macromol. 104 (2017) 1986–1995. [43] P. Shao, S. Xuan, W. Wu, L. Qu, Encapsulation efficiency and controlled release of Ganoderma lucidum polysaccharide microcapsules by spray drying using different combinations of wall materials, Int. J. Biol. Macromol. 125 (2019) 962–969. [44] S. Shamaei, S.S. Seiiedlou, M. Aghbashlo, E. Tsotsas, A. Kharaghani, Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules, Innov. Food Sci. Emerg. Technol. 39 (2017) 101–112. [45] S.A. Desobry, F.M. Netto, T.P. Labuza, Comparison of spray-drying, drumdrying and freeze-drying for b-carotene encapsulation and preservation, J. Food Sci. 62 (1997) 1158–1162. [46] R.C. Santana, F.A. Perrechil, R.L. Cunha, High-and low-energy emulsifications for food applications: a focus on process parameters, Food Eng. Rev. 5 (2013) 107–122. [47] A. Jaworek, Micro-and nanoparticle production by electrospraying, Powder Technol. 176 (2007) 18–35. [48] N. Khalid, I. Kobayashi, M.A. Neves, K. Uemura, M. Nakajima, Microchannel emulsification: a promising technique towards encapsulation of functional compounds, Crit. Rev. Food Sci. Nutr. 58 (2018) 2364–2385. [49] J. Wu, Q. Fan, Y. Xia, G. Ma, Uniform-sized particles in biomedical field prepared by membrane emulsification technique, Chem. Eng. Sci. 125 (2015) 85–97. [50] R.K. Shah, H.C. Shum, A.C. Rowat, D. Lee, J.J. Agresti, A.S. Utada, L.Y. Chu, J.W. Kim, A. Fernandez-Nieves, C.J. Martinez, D.A. Weitz, Designer emulsions using microfluidics, Mater. Today 11 (2008) 18–27. [51] A.A. Maan, A. Nazir, M.K.I. Khan, R. Boom, K. Schroën, Microfluidic emulsification in food processing, J. Food Eng. 147 (2015) 1–7. [52] M. Zhang, W. Wang, R. Xie, X. Ju, Z. Liu, L. Jiang, Q. Chen, L. Chu, Controllable microfluidic strategies for fabricating microparticles using emulsions as templates, Particuology 24 (2016) 18–31. [53] A.A. Maan, K. Schroën, R. Boom, Spontaneous droplet formation techniques for monodisperse emulsions preparation –Perspectives for food applications, J. Food Eng. 107 (2011) 334–346. [54] X. Liu, M. Nakajima, H. Nabetani, Q. Xu, S. Ichikawa, Y. Sano, Stability characteristics of dispersed oil droplets prepared by the microchannel emulsification method, J. Colloid Interface Sci. 233 (2001) 23–30. [55] A. El-Abbassi, M.A. Neves, I. Kobayashi, A. Hafidi, M. Nakajima, Preparation and characterization of highly stable monodisperse argan oil-in-water emulsions using microchannel emulsification, Eur. J. Lipid. Sci. Technol. 115 (2013) 224–231. [56] N. Purwanti, M.A. Neves, K. Uemura, M. Nakajima, I. Kobayashi, Stability of monodisperse clove oil droplets prepared by microchannel emulsification, Colloids Surf. A Physicochem. Eng. Asp. 466 (2015) 66–74. [57] H. Lee, C.-H. Choi, A. Abbaspourrad, C. Wesner, M. Caggioni, T. Zhu, D.A. Weitz, Encapsulation and enhanced retention of fragrance in polymer microcapsules, ACS Appl. Mater. Inter. 8 (2016) 4007–4013. [58] T. Kawakatsu, G. Trägårdh, C. Trägårdh, Production of W/O/W emulsions and S/O/W pectin microcapsules by microchannel emulsification, Colloids Surf. A Physicochem. Eng. Asp. 189 (2001) 257–264. [59] G. Chen, M. Jiang, Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly, Chem. Soc. Rev. 40 (2011) 2254–2266. [60] I. Goubet, J.L. Le Quere, A.J. Voilley, Retention of aroma compounds by carbohydrates: influence of their physicochemical characteristics and of their physical state. A review, J. Agr. Food Chem. 46 (1998) 1981–1990. [61] B. Zhang, J. Huang, K. Liu, Z. Zhou, L. Jiang, Y. Shen, D. Zhao, Biocompatible cyclodextrin-based metal-organic frameworks for long-term sustained release of fragrances, Ind. Eng. Chem. Res. 58 (2019) 19767–19777. [62] G. Zhu, Z. Xiao, R. Zhou, N. Feng, Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule, J. Food Sci. Technol. 52 (2015) 4607–4612. [63] J. Pagington, Beta-cyclodextrin, Perfum. Flavorist 11 (1986) 49–58. [64] B.R. Bhandari, B.R. D’Arc, I. Padukka, Encapsulation of lemon oil by paste method using b-cyclodextrin: encapsulation efficiency and profile of oil volatiles, J. Agr. Food Chem. 47 (1999) 5194–5197. [65] Y. Zhang, D. Rochefort, Characterisation and applications of microcapsules obtained by interfacial polycondensation, J. Microencapsul. 29 (2012) 636–649. [66] O. Nguon, F. Lagugné-Labarthet, F.A. Brandys, J. Li, E.R. Gillies, Microencapsulation by in situ polymerization of amino resins, Polym. Rev. 58 (2018) 326–375. [67] O. Pascu, R. Garcia-Valls, M. Giamberini, Interfacial polymerization of an epoxy resin and carboxylic acids for the synthesis of microcapsules, Polym. Int. 57 (2008) 995–1006. [68] E.M. Soares-Latour, J. Bernard, S. Chambert, E. Fleury, N. Sintes-Zydowicz, Environmentally benign 100% bio-based oligoamide microcapsules, Colloids Surf. A Physicochem. Eng. Asp. 524 (2017) 193–203. [69] P. Persico, C. Carfagna, L. Danicher, Y. Frere, Polyamide microcapsules containing jojoba oil prepared by inter-facial polymerization, J. Microencapsul. 22 (2005) 471–486. [70] A. Laguecir, Y. Frère, L. Danicher, M. Burgard, Size effect of complexing microcapsules on copper ion extraction, Eur. Polym. J. 38 (2002) 977–981. [71] A. Laguecir, B. Ernst, Y. Frère, L. Danicher, M. Burgard, Extraction of metal cations by polyterephthalamide microcapsules containing a poly(acrylic acid) gel, J. Microencapsul. 19 (2002) 17–28. [72] S. Kiparissides, C. Mange, F. Foissy, A. Alexandridou, Surface characterization of oil-containing polyterephthalamide microcapsules prepared by Interfacial polymerization, J. Microencapsul. 18 (2001) 767–781. [73] C. Liang, X. Lingling, S. Hongbo, Z. Zhibin, Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system, Energy Convers. Manag. 50 (2009) 723–729. [74] N. Azizi, Y. Chevalier, M. Majdoub, Isosorbide-based microcapsules for cosmeto-textiles, Ind. Crops Prod. 52 (2014) 150–157. [75] Z. Liao, D. Xue, H. Li, L. Shi, Fragrance-containing microcapsules based on interfacial thiol-ene polymerization, J. Appl. Polym. Sci. 133 (2016) 1–7. [76] H.Y. Lee, S.J. Lee, I.W. Cheong, J.H. Kim, Microencapsulation of fragrant oil via in situ polymerization: Effects of pH and melamine-formaldehyde molar ratio, J. Microencapsul. 19 (2002) 559–569. [77] J.P. Wang, X.P. Zhao, H.L. Guo, Q. Zheng, Preparation of microcapsules containing two-phase core materials, Langmuir 20 (2004) 10845–10850. [78] X. Fei, H. Zhao, B. Zhang, L. Cao, M. Yu, J. Zhou, L. Yu, Microencapsulation mechanism and size control of fragrance microcapsules with melamine resin shell, Colloids Surf. A Physicochem. Eng. Asp. 469 (2015) 300–306. [79] X. Guo, J. Cao, Y. Peng, R. Liu, Incorporation of microencapsulated dodecanol into wood flour/high-density polyethylene composite as a phase change material for thermal energy storage, Mater. Des. 89 (2016) 1325–1334. [80] S. Bône, C. Vautrin, V. Barbesant, S. Truchon, I. Harrison, C. Geffroy, Microencapsulated fragrances in melamine formaldehyde resins, Chimia (Aarau) 65 (2011) 177–181. [81] Y. Shin, D.-I. Yoo, K. Son, Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules, J. Appl. Polym. Sci. 96 (2005) 2005–2010. [82] J.S. Hwang, J.N. Kim, Y.J. Wee, H.G. Jang, S.H. Kim, H.W. Ryu, Factors affecting the characteristics of melamine resin microcapsules containing fragrant oils, Biotechnol. Bioproc. E 11 (2006) 391–395. [83] B. Sumiga, E. Knez, M. Vrtačnik, V. Ferk-Savec, M. Starešinič, B. Boh, Production of melamine-formaldehyde PCM microcapsules with ammonia scavenger used for residual formaldehyde reduction, Acta Chim. Slov. 58 (2011) 14–25. [84] A.R. Lee, E. Yi, Investigating performance of cotton and lyocell knit treated with microcapsules containing Citrus unshiu oil, Fiber Polym. 14 (2013) 2088–2096. [85] M. Williams, B. Olland, S.P. Armes, P. Verstraete, J. Smets, Inorganic/organic hybrid microcapsules: Melamine formaldehyde-coated Laponite-based Pickering emulsions, J. Colloid Interface Sci. 460 (2015) 71–80. [86] Y. He, S. Yao, J. Hao, H. Wang, L. Zhu, T. Si, Y. Sun, J. Lin, Synthesis of melamine-formaldehyde microcapsules containing oil-based fragrances via intermediate polyacrylate bridging layers, Chin. J. Chem. Eng. 27 (2019) 2574–2580. [87] G. León, N. Paret, P. Fankhauser, D. Grenno, P. Erni, L. Ouali, D.L. Berthier, Formaldehyde-free melamine microcapsules as core/shell delivery systems for encapsulation of volatile active ingredients, RSC Adv. 7 (2017) 18962–18975. [88] D. Fu, Y. Su, B. Xie, G. Liu, Z. Li, K. Jiang, D. Wang, Pore decoration on microcapsule surface using nonionic surfactant micelles as template: Temperature effect and encapsulation mechanism investigation, Colloids Surf. A Physicochem. Eng. Asp. 384 (2011) 219–227. [89] B. Xie, H. Shi, G. Liu, Y. Zhou, Y. Wang, Y. Zhao, D. Wang, Preparation of surface porous microcapsules templated by self-assembly of nonionic surfactant micelles, Chem. Mater. 20 (2008) 3099–3104. [90] C. Peniche, W. Argüelles-Monal, H. Peniche, N. Acosta, Chitosan: an attractive biocompatible polymer for microencapsulation, Macromol. Biosci. 3 (2003) 511–520. [91] W. Zhao, Y. Wang, Coacervation with surfactants: From single-chain surfactants to Gemini surfactants, Adv. Colloid Interface Sci. 239 (2017) 199–212. [92] Y.P. Timilsena, T.O. Akanbi, N. Khalid, B. Adhikari, C.J. Barrow, Complex coacervation: Principles, mechanisms and applications in microencapsulation, Int. J. Biol. Macromol. 121 (2019) 1276–1286. [93] V.R. Babu, V.R. Kanth, J.M. Mukund, T.M. Aminabhavi, Novel methyl cellulosegrafted-acrylamide/gelatin microspheres for controlled release of nifedipine, J. Appl. Polym. Sci. 115 (2010) 3542–3549. [94] P. Sutaphanit, P. Chitprasert, Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology, Food Chem. 150 (2014) 313–320. [95] K.-G. Wu, Q. Xiao, Microencapsulation of fish oil by simple coacervation of hydroxypropyl methylcellulose, Chin. J. Chem. 23 (2005) 1569–1572. [96] A.R. Bachtsi, C. Kiparissides, Synthesis and release studies of oil-containing poly(vinyl alcohol) microcapsules prepared by coacervation, J. Control. Release 38 (1996) 49–58. [97] F.V. Leimann, O.H. Gonçalves, R.A.F. Machado, A. Bolzan, Antimicrobial activity of microencapsulated lemongrass essential oil and the effect of experimental parameters on microcapsules size and morphology, Mater. Sci. Eng. C 29 (2009) 430–436. [98] M. Sahlan, M.R. Rahman, Optimization of microencapsulation composition of menthol, vanillin, and benzyl acetate inside polyvinyl alcohol with coacervation method for application in perfumery, IOP Conf. Series: Mater. Sci. Eng. 214 (2017) 012005. [99] H.G. Bungenberg de Jong, H.R. Kruyt, Coacervation (partial miscibility in colloid systems), Proc. K. Ned. Akad. Wet. 32 (1929) 849–856. [100] C. Schmitt, S.L. Turgeon, Protein/polysaccharide complexes and coacervates in food systems, Adv. Colloid Interface Sci. 167 (2011) 63–70. [101] S.L. Turgeon, C. Schmitt, C. Sanchez, Protein–polysaccharide complexes and coacervates, Curr. Opin. Colloid Interface Sci. 12 (2007) 166–178. [102] K. Kaibara, T. Okazaki, H.B. Bohidar, P.L. Dubin, pH-induced coacervation in complexes of bovine serum albumin and cationic polyelectrolytes, Biomacromolecules 1 (2000) 100–107. [103] K.W. Mattison, I.J. Brittain, P.L. Dubin, Protein-polyelectrolyte phase boundaries, Biotechnol. Prog. 11 (1995) 632–637. [104] S. Liu, N.H. Low, M.T. Nickerson, Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolategum Arabic complexes, J. Agr. Food Chem. 57 (2009) 1521–1526. [105] C.J.F. Souza, E.E. Garcia-Rojas, Interpolymeric complexing between egg white proteins and xanthan gum: effect of salt and protein/polysaccharide ratio, Food Hydrocoll. 66 (2017) 268–275. [106] S. Ghayempour, M. Montazer, Micro/nanoencapsulation of essential oils and fragrances: focus on perfumed, antimicrobial, mosquito-repellent and medical textiles, J. Microencapsul. 33 (2016) 497–510. [107] B. Solomon, F.F. Sahle, T. Gebre-Mariam, K. Asres, R.H. Neubert, Microencapsulation of citronella oil for mosquito-repellent application: formulation and in vitro permeation studies, Eur. J. Pharm. Biopharm. 80 (2012) 61–66. [108] M.C. Mauguet, J. Legrand, L. Brujes, G. Carnelle, C. Larre, Y. Popineau, Gliadin matrices for microencapsulation processes by simple coacervation method, J. Microencapsul. 19 (2002) 377–384. [109] B. Ocak, G. Gülümser, E. Baloğlu, Microencapsulation of Melaleuca alternifolia (Tea Tree) oil by using simple coacervation method, J. Essent. Oil Res. 23 (2011) 58–65. [110] D. Wang, D.F. Chi, Morphology and release profile of microcapsules encapsulated alpha-pinene by complex coacervation, Adv. Mat. Res. 602–604 (2013) 1285–1288. [111] T. Koupantsis, E. Pavlidou, A. Paraskevopoulou, Glycerol and tannic acid as applied in the preparation of milk proteins –CMC complex coavervates for flavour encapsulation, Food Hydrocoll. 57 (2016) 62–71. [112] T. Koupantsis, A. Paraskevopoulou, Flavour retention in sodium caseinate -carboxymethylcellulose complex coavervates as a function of storage conditions, Food Hydrocoll. 69 (2017) 459–465. [113] Z.-Q. Zhang, C.-H. Pan, D. Chung, Tannic acid cross-linked gelatin–gum Arabic coacervate microspheres for sustained release of allyl isothiocyanate: characterization and in vitro release study, Food Res. Int. 44 (2011) 1000–1007. [114] G. He, L. Li, W. Man, T. Wong, Z. Yang, Q. Jiang, The study of cotton finishing by artemsia argyi oil microcapsules, Mater. Sci. Forum. 654–656 (2010) 2281–2284. [115] C.P. Chang, T.K. Leung, S.M. Lin, C.C. Hsu, Release properties on gelatin-gum Arabic microcapsules containing camphor oil with added polystyrene, Colloids Surf. B 50 (2006) 136–140. [116] D.V. Mendanha, S.E. Molina Ortiz, C.S. Favaro-Trindade, A. Mauri, E.S. Monterrey-Quintero, M. Thomazini, Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin, Food Res. Int. 42 (2009) 1099–1104. [117] M.M.M. Specos, J.J. García, J. Tornesello, P. Marino, M.D. Vecchia, M.V.D. Tesoriero, L.G. Hermida, Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles, Trans. R. Soc. Trop. Med. Hyg. 104 (2010) 653–658. [118] C.H. Liu, H.J. Zhou, J.Y. Liu, X.T. Li, H. Fang, Z.H. Yang, Preparation of antibacterial citronella oil microcapsules and their application in cotton fabrics, Adv. Mat. Res. 627 (2013) 271–274. [119] F.M. Bezerra, O.G. Carmona, C.G. Carmona, M.J. Lis, F.F. de Moraes, Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices, Cellulose 23 (2016) 1459–1470. [120] R.T. Thimma, S. Tammishetti, Study of complex coacervation of gelatin with sodium carboxymethyl guar gum: Microencapsulation of clove oil and sulphamethoxazole, J. Microencapsul. 20 (2003) 203–210. [121] D.B. Yuan, Y.Q. Hu, T. Zeng, S.W. Yin, C.H. Tang, X.Q. Yang, Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles, Food Funct. 8 (2017) 2220–2230. [122] X.L. Gu, X. Zhu, X.Z. Kong, Y. Tan, Comparisons of simple and complex coacervations for preparation of sprayable insect sex pheromone microcapsules and release control of the encapsulated pheromone molecule, J. Microencapsul. 27 (2010) 355–364. [123] Microencapsulation of dodecyl acetate by complex coacervation of whey protein with acacia gum and its release behavior, Chin. Chem. Lett. 23 (2012) 847–850. [124] F. Tamjidi, A. Nasirpour, M. Shahedi, Mixture design approach for evaluation of fish oil microencapsulation in gelatin-acacia gum coacervates, Int. J. Polym. Mater. 62 (2013) 444–449. [125] Y. Yeo, E. Bellas, W. Firestone, R. Langer, D.S. Kohane, Complex coacervates for thermally sensitive controlled release of flavor compounds, J. Agr. Food Chem. 53 (2005) 7518–7525. [126] S. Liu, N.H. Low, M.T. Nickerson, Entrapment of flaxseed oil within gelatingum Arabic capsules, J. Am. Oil Chem. Soc. 87 (2010) 809–815. [127] L.F. Siow, C.S. Ong, Effect of pH on garlic oil encapsulation by complex coacervation, Int. J. Food Process. Technol. 4 (2013) 1–9. [128] Y. Lv, X. Zhang, S. Abbas, E. Karangwa, Simplified optimization for microcapsule preparation by complex coacervation based on the correlation between coacervates and the corresponding microcapsule, J. Food Eng. 111 (2012) 225–233. [129] Z. Xiao, W. Liu, G. Zhu, R. Zhou, Y. Niu, Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation, Flavour Fragr. J. 29 (2014) 166–172. [130] B. Ocak, Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil, J. Environ. Manage. 100 (2012) 22–28. [131] M.M. Miró Specos, G. Escobar, P. Marino, C. Puggia, M.V. Defain Tesoriero, L. Hermida, Aroma finishing of cotton fabrics by means of microencapsulation techniques, J. Ind. Text. 40 (2010) 13–32. [132] S. Leclercq, K.R. Harlander, G.A. Reineccius, Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores, Flavour Fragr. J. 24 (2009) 17–24. [133] S. Leclercq, C. Milo, G.A. Reineccius, Effects of cross-linking, capsule wall thickness, and compound hydrophobicity on aroma release from complex coacervate microcapsules, J. Agr. Food Chem. 57 (2009) 1426–1432. [134] K. Zhang, H. Zhang, X. Hu, S. Bao, H. Huang, Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervation, Colloids Surf. B 89 (2012) 61–66. [135] L. Li, L. Song, T. Hua, W. Man, K. Wong, Characteristics of weaving parameters in microcapsule fabrics and their influence on loading capability, Text. Res. J. 83 (2013) 113–121. [136] C. Peng, S.Q. Zhao, J. Zhang, G.Y. Huang, L.Y. Chen, F.Y. Zhao, Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation, Food Chem. 165 (2014) 560–568. [137] N. Devi, T.K. Maji, Genipin crosslinked microcapsules of gelatin A and jcarrageenan polyelectrolyte complex for encapsulation of Neem (Azadirachta Indica A.Juss.) seed oil, Polym. Bull. 65 (2010) 347–362. [138] N. Devi, T.K. Maji, Effect of crosslinking agent on neem (Azadirachta Indica A. Juss.) seed oil (NSO) encapsulated microcapsules of j -carrageenan and chitosan polyelectrolyte complex, J. Macromol. Sci. A 46 (2009) 1114–1121. [139] F. Weinbreck, M. Minor, C.G. de Kruif, Microencapsulation of oils using whey protein/gum Arabic coacervates, J. Microencapsul. 21 (2004) 667–679. [140] J.X. Xiao, H.Y. Yu, J. Yang, Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic, Food Chem. 125 (2011) 1267–1272. [141] R.S. Samakradhamrongthai, P.T. Angeli, P. Kopermsub, N. Utama-ang, Optimization of gelatin and gum arabic capsule infused with pandan flavor for multi-core flavor powder encapsulation, Carbohydr. Polym. 226 (2019) 115262. [142] K.S. Mayya, A. Bhattacharyya, J.F. Argillier, Micro-encapsulation by complex coacervation: influence of surfactant, Polym. Int. 52 (2003) 644–647. [143] Z.M. Yang, G.Q. Liang, L. Li, W.M. Au, H.Y. Zhong, T.K.S. Wong, Z.H. Yang, Preparation of antibacterial cotton fabric containing patchouli oil microcapsules by chemical crosslinking method, Adv. Mat. Res. 221 (2011) 308–315. [144] J. Liu, C. Liu, Y. Liu, M. Chen, Y. Hu, Z. Yang, Study on the grafting of chitosan–gelatin microcapsules onto cotton fabrics and its antibacterial effect, Colloids Surf. B 109 (2013) 103–108. [145] G.T. Han, Z.M. Yang, Z. Peng, G. Wang, M. Zhou, Y.X. Pang, P.W. Li, Preparation and properties analysis of slow-release microcapsules containing patchouli oil, Adv. Mat. Res. 641–642 (2013) 935–938. [146] Z. Dong, Y. Ma, K. Hayat, C. Jia, S. Xia, X. Zhang, Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation, J. Food Eng. 104 (2011) 455–460. [147] C. Dima, M. Cotârlet, P. Alexe, S. Dima, Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method, Innov. Food Sci. Emerg. 22 (2014) 203–211. [148] M.P. Nori, C.S. Favaro-Trindade, S. Matias de Alencar, M. Thomazini, J.C. de Camargo Balieiro, C.J. Contreras Castillo, Microencapsulation of propolis extract by complex coacervation, LWT-Food Sci. Technol. 44 (2011) 429–435. [149] E. Piacentini, L. Giorno, M.M. Dragosavac, G.T. Vladisavljević, R.G. Holdich, Microencapsulation of oil droplets using cold water fish gelatine/gum Arabic complex coacervation by membrane emulsification, Food Res. Int. 53 (2013) 362–372. [150] G.F. Nogueira, A.S. Prata, C.R.F. Grosso, Alginate and whey protein basedmultilayered particles: production, characterisation and resistance to pH, ionic strength and artificial gastric/intestinal fluid, J. Microencapsul. 34 (2017) 151–161. [151] C. Butstraen, F. Salaün, Preparation of microcapsules by complex coacervation of gum Arabic and chitosan, Carbohydr. Polym. 99 (2014) 608–616. [152] B. Wang, B. Adhikari, C.J. Barrow, Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation, Food Chem. 158 (2014) 358–365. [153] Z. Yang, Z. Peng, J. Li, S. Li, L. Kong, P. Li, Q. Wang, Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach, Food Chem. 145 (2014) 272–277. [154] A.S. Prata, M.H.A. Zanin, M.I. Ré, C.R.F. Grosso, Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil, Colloids Surf. B 67 (2008) 171–178. [155] A.S. Prata, C. Menut, A. Leydet, J.R. Trigo, C.R.F. Grosso, Encapsulation and release of a fluorescent probe, khusimyl dansylate, obtained from vetiver oil by complex coacervation, Flavour Fragr. J. 23 (2008) 7–15. [156] T.K. Maji, M.R. Hussain, Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan–gelatin complex for mosquito repellent application, J. Appl. Polym. Sci. 111 (2009) 779–785. [157] J.S. Hwang, J.N. Kim, Y.J. Wee, J.S. Yun, H.G. Jang, S.H. Kim, H.W. Ryu, Preparation and characterization of melamine-formaldehyde resin microcapsules containing fragrant oil, Biotechnol. Bioproc. E 11 (2006) 332–336. [158] M. Jacquemond, N. Jeckelmann, L. Ouali, O.P. Haefliger, Perfume-containing polyurea microcapsules with undetectable levels of free isocyanates, J. Appl. Polym. Sci. 114 (2009) 3074–3080. [159] D. Zhao, X. Jiao, M. Zhang, K. Ye, X. Shi, X. Lu, G. Qiu, K.J. Shea, Preparation of high encapsulation efficiency fragrance microcapsules and their application in textiles, RSC Adv. 6 (2016) 80924–80933. [160] K.A. Günay, D.L. Berthier, H.A. Jerri, D. Benczédi, H.-A. Klok, A. Herrmann, Selective peptide-mediated enhanced deposition of polymer fragrance delivery systems on human hair, ACS Appl. Mater. Inter. 9 (2017) 24238–24249. [161] J. Song, H. Chen, Preparation of aroma microcapsules with sodium alginate and tetradecylallyldimethylammonium bromide (TADAB) and its potential applications in cosmetics, Flavour Fragr. J. 33 (2018) 160–165. [162] Y. Wei, Y. Wang, L. Wang, D. Hao, G. Ma, Fabrication strategy for amphiphilic microcapsules with narrow size distribution by premix membrane emulsification, Colloids Surf. B 87 (2011) 399–408. [163] X. Xi, T. Ye, S. Wang, X. Na, J. Wang, S. Qing, X. Gao, C. Wang, F. Li, W. Wei, G. Ma, Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination, Sci. Adv. 6 (2020) eaay7735. [164] G. Ma, Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications, J. Control. Release 193 (2014) 324–340. [165] F. Qi, J. Wu, T. Yang, G. Ma, Z. Su, Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification, Acta Biomater. 10 (2014) 4247–4256. [166] G.T. Vladisavljević, Structured microparticles with tailored properties produced by membrane emulsification, Adv. Colloid Interface Sci. 225 (2015) 53–87. [167] S. Wang, C.M. McGuirk, A. d’Aquino, J.A. Mason, C.A. Mirkin, Metal-organic framework nanoparticles, Adv. Mater. 30 (2018), 1800202-180215. [168] W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal–organicframework-derived carbon materials, Adv. Mater. 31 (2019) 1804740–1804774. [169] X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H.-C. Zhou, Enzyme–MOF (metal–organic framework) composites, Chem. Soc. Rev. 46 (2017) 3386–3401. [170] B. Strzemiecka, M. Kasperkowiak, M. Łozyński, D. Paukszta, A. Voelkel, Examination of zeolites as fragrance carriers, Micropor. Mesopor. Mater. 161 (2012) 106–114. [171] R. Tekin, N. Bac, J. Warzywoda, A. Sacco, Encapsulation of a fragrance molecule in zeolite X, Micropor. Mesopor. Mater. 215 (2015) 51–57. [172] Z. Cao, C. Xu, X. Ding, S. Zhu, H. Chen, D. Qi, Synthesis of fragrance/silica nanocapsules through a sol–gel process in miniemulsions and their application as aromatic finishing agents, Colloid Polym. Sci. 293 (2015) 1129–1139. [173] P. Silva, S.M.F. Vilela, J.P.C. Tomé, F.A. Almeida Paz, Multifunctional metal–organic frameworks: From academia to industrial applications, Chem. Soc. Rev. 44 (2015) 6774–6803. [174] J. Zhang, H. Wu, T.J. Emge, J. Li, A flexible MMOF exhibiting high selectivity for CO2 over N2, CH4 and other small gases, Chem. Comm. 46 (2010) 9152–9154. [175] J. Vaughn, H. Wu, B. Efremovska, D.H. Olson, J. Mattai, C. Ortiz, A. Puchalski, J. Li, L. Pan, Encapsulated recyclable porous materials: An effective moisturetriggered fragrance release system, Chem. Comm. 49 (2013) 5724–5726. [176] E. Lashkari, H. Wang, L. Liu, J. Li, K. Yam, Innovative application of metalorganic frameworks for encapsulation and controlled release of allyl isothiocyanate, Food Chem. 221 (2017) 926–935. [177] H. Wang, E. Lashkari, H. Lim, C. Zheng, T.J. Emge, Q. Gong, K. Yam, J. Li, The moisture-triggered controlled release of a natural food preservative from a microporous metal–organic framework, Chem. Comm. 52 (2016) 2129–2132. [178] Y. Liu, Y. Wang, J. Huang, Z. Zhou, D. Zhao, L. Jiang, Y. Shen, Encapsulation and controlled release of fragrances from functionalized porous metal–organic frameworks, AIChE J. 65 (2019) 491–499. [179] S.A. Ghodke, S.H. Sonawane, B.A. Bhanvase, S. Mishra, K.S. Joshi, Studies on fragrance delivery from inorganic nanocontainers: Encapsulation, release and modeling studies, J. Inst. Eng. India Ser. E 96 (2015) 45–53. [180] M. Rehan, M.E. El-Naggar, H.M. Mashaly, R. Wilken, Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics, Carbohydr. Polym. 182 (2018) 29–41. [181] T. Ganicz, J. Kurjata, R.J. Perry, W.A. Stanczyk, Organosilicon fragrance carriers, Silicon 7 (2015) 333–341. [182] M.A. Ashraf, A.M. Khan, M. Ahmad, M. Sarfraz, Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment, Front. Chem. 3 (2015) 42–56. [183] M. Marchal, J. Beltran, Determination of synthetic musk fragrances, Int. J. Environ. Anal. Chem. 96 (2016) 1213–1246. [184] C. Bicchi, ESSENTIAL OILS | Gas Chromatography, in: I.D. Wilson (Ed.), Encyclopedia of Separation Science, Academic Press, Oxford, 2000. [185] N.H. Snow, G.C. Slack, Head-space analysis in mo[186] A.C. Soria, M.J. García-Sarrió, A.I. Ruiz-Matute, M.L. Sanz, Headspace techniques for volatile sampling, Compr. Anal. Chem. 76 (2017) 255–278. [187] Y.E. Silina, J.R. Tillotson, A. Manz, Storage and controlled release of fragrances maintaining a constant ratio of volatile compounds, Anal. Methods 9 (2017) 6073–6082. [188] G. Lian, M.E. Malone, J.E. Homan, I.T. Norton, A mathematical model of volatile release in mouth from the dispersion of gelled emulsion particles, J. Control. Release 98 (2004) 139–155. [189] G. Decock, D. Landy, G. Surpateanu, S. Fourmentin, Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography, J. Incl. Phenom. Macro. 62 (2008) 297–302. [190] M. Kfoury, L. Auezova, S. Ruellan, H. Greige-Gerges, S. Fourmentin, Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins, Carbohydr. Polym. 118 (2015) 156–164. [191] A.M. Seuvre, M.A.E. Díaz, A. Voilley, Influence of the food matrix structure on the retention of aroma compounds, J. Agr. Food Chem. 48 (2000) 4296–4300. [192] M. Lakatos, Measurement of residual solvents in a drug substance by a purgeand-trap method, J. Pharm. Biomed. Anal. 47 (2008) 954–957. [193] M. Biniecka, S. Caroli, Analytical methods for the quantification of volatile aromatic compounds, Trends Analyt. Chem. 30 (2011) 1756–1770. [194] Y.D. Kim, C.V. Morr, Microencapsulation properties of gum arabic and several food proteins: spray-dried orange oil emulsion particles, J. Agr. Food Chem. 44 (1996) 1314–1320. [195] J.S. Kauer, J. White, Electronic nose, in: L.R. Squire (Ed.), Encyclopedia of Neuroscience, Academic Press, Oxford, 2009. [196] S.D. Rodriguez, M. Eugenia Monge, A.C. Olivieri, R. Martin Negri, D.L. Bernik, Time dependence of the aroma pattern emitted by an encapsulated essence studied by means of electronic noses and chemometric analysis, Food Res. Int. 43 (2010) 797–804. [197] Y. Liu, K. Liu, M. Zhao, S. Wang, Z. Zhou, Y. Shen, L. Jiang, A pH-responsive fragrance release system based on pseudopeptide polymeric micelles, React. Funct. Polym. 132 (2018) 138–144. [198] D.S. Tupuna, K. Paese, S.S. Guterres, A. Jablonski, S.H. Flôres, A.D.O. Rios, Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials, Ind. Crops Prod. 111 (2018) 846–855. [199] T. Gumí, S. Gascón, C. Torras, R. Garcia-Valls, Vanillin release from macrocapsules, Desalination 245 (2009) 769–775. [200] B. Peña, C. Panisello, G. Aresté, R. Garcia-Valls, T. Gumí, Preparation and characterization of polysulfone microcapsules for perfume release, Chem. Eng. J. 179 (2012) 394–403. [201] T. Feczkó, V. Kokol, B. Voncina, Preparation and characterization of ethylcellulose-based microcapsules for sustaining release of a model fragrance, Macromol. Res. 18 (2010) 636–640. [202] N. Devi, T.K. Maji, A novel microencapsulation of neem (Azadirachta Indica A. Juss.) seed oil (NSO) in polyelectrolyte complex of j-carrageenan and chitosan, J. Appl. Polym. Sci. 113 (2009) 1576–1583. [203] Y. Li, Y.Q. Huang, H.F. Fan, Q. Xia, Comparison of release behaviors of fragrance/hydroxypropyl-b-cyclodextrin inclusion complex and fragrance microcapsules, Integr. Ferroelectr. 152 (2014) 81–89. [204] S. Bandyopadyay, D. Das, Retention and sustained release of fragrance by Cyclodextrin functionalized cotton fabric modified using maleic anhydride, Flavour Fragr. J. 32 (2017) 207–211. [205] H. Zhang, S. Sun, X. Wang, D. Wu, Fabrication of microencapsulated phase change materials based on n-octadecane core and silica shell through interfacial polycondensation, Colloids Surf. A Physicochem. Eng. Asp. 389 (2011) 104–117. [206] Z. Aytac, Z.I. Yildiz, F. Kayaci-Senirmak, N.O.S. Keskin, S.I. Kusku, E. Durgun, T. Tekinay, T. Uyar, Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymerfree electrospinning, J. Agr. Food Chem. 64 (2016) 7325–7334. [207] D.A. Buckley, Fragrance ingredient labelling in products on sale in the U.K, Br. J. Dermatol. 157 (2007) 295–300. [208] L. Brannon-Peppas, Controlled Release in the Food and Cosmetics Industries, American Chemical Society, Washington, D.C., 1993. [209] J. Bergek, M. Andersson Trojer, A. Mok, L. Nordstierna, Controlled release of microencapsulated 2-n-octyl-4-isothiazolin-3-one from coatings: Effect of microscopic and macroscopic pores, Colloids Surf. A Physicochem. Eng. Asp. 458 (2014) 155–167. [210] M. Andersson Trojer, L. Nordstierna, M. Nordin, M. Nydén, K. Holmberg, Encapsulation of actives for sustained release, Phys. Chem. Chem. Phys. 15 (2013) 17727–17741. [211] J. Crank, The Mathematics of Diffusion, Oxford University Press, Oxford, 1979. [212] V. Normand, G. Dardelle, P.E. Bouquerand, L. Nicolas, D.J. Johnston, Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism, J. Agr. Food Chem. 53 (2005) 7532–7543. [213] M.A. Teixeira, O. Rodríguez, A.E. Rodrigues, Diffusion and performance of fragranced products: prediction and validation, AIChE J. 59 (2013) 3943–3957. [214] Y. Ran, Y. He, G. Yang, J.L.H. Johnson, S.H. Yalkowsky, Estimation of aqueous solubility of organic compounds by using the general solubility equation, Chemosphere 48 (2002) 487–509. [215] M.P. Bohrer, G.D. Patterson, P.J. Carroll, Hindered diffusion of dextran and ficoll in microporous membranes, Macromolecules 17 (1984) 1170–1173. [216] D.J. McClements, Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems, Adv. Colloid Interface Sci. 219 (2015) 27–53. [217] N.A. Peppas, D.J. Am Ende, Controlled release of perfumes from polymers. II. Incorporation and release of essential oils from glassy polymers, J. Appl. Polym. Sci. 66 (1997) 509–513. [218] P.M. Padmaa, J. Preethy Ani, S. Cm, C.G.V. Peter, Release kinetics –concepts and applications, IJPTONLINE 8 (2018) 12–20. [219] Y. Fu, W.J. Kao, Drug release kinetics and transport mechanisms of nondegradable and degradable polymeric delivery systems, Expert Opin. Drug Deliv. 7 (2010) 429–444. [220] L. Shi, H. Hopfer, G.R. Ziegler, L. Kong, Starch-menthol inclusion complex: structure and release kinetics, Food Hydrocoll. 97 (2019) 1–7. [221] M.R. Amiryousefi, M. Mohebbi, S. Golmohammadzadeh, A. Koocheki, Encapsulation of caffeine in hydrogel colloidosome: optimization of fabrication, characterization and release kinetics evaluation, Flavour Fragr. J. 31 (2016) 163–172. [222] M. Karim, M. Fathi, S. Soleimanian-Zad, Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needle-less electrospinning: production, characterization and their application to reduce nitrite in sausages, J. Food Eng. 288 (2021) 110140. [223] H. Rezaeinia, B. Ghorani, B. Emadzadeh, N. Tucker, Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: characterization of nano-capsules and modeling the kinetics of release, Food Hydrocoll. 93 (2019) 374–385. [224] A. Sultana, H. Yoshii, Kinetic study of controlled release of flavor compounds from spray-dried encapsulated yeast powder using dynamic vapor sorptiongas chromatography, Biosci. Biotechnol. Biochem. 83 (2019) 738–746. [225] F. Langenbucher, Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution, J. Pharm. Pharmacol 24 (1972) 979–981. [226] C. Mircioiu, V. Voicu, V. Anuta, A. Tudose, C. Celia, D. Paolino, M. Fresta, R. Sandulovici, I. Mircioiu, Mathematical modeling of release kinetics from supramolecular drug delivery systems, Pharmaceutics 11 (2019) 140–184. [227] M.R. Amiryousefi, M. Mohebbi, S. Golmohammadzadeh, A. Koocheki, F. Baghbani, Fuzzy logic application to model caffeine release from hydrogel colloidosomes, J. Food Eng. 212 (2017) 181–189. [228] N. Dan, Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials, Langmuir 30 (2014) 13809–13814. [229] N. Dan, Compound release from nanostructured lipid carriers (NLCs), J. Food Eng. 171 (2016) 37–43. [230] F. Casanova, L. Santos, Encapsulation of cosmetic active ingredients for topical application –A review, J. Microencapsul. 33 (2016) 1–17. [231] M. Bringas-Lantigua, D. Valdés, J.A. Pino, Influence of spray-dryer air temperatures on encapsulated lime essential oil, Int. J. Food Sci. Technol. 47 (2012) 1511–1517.dern gas chromatography, Trends Analyt. Chem. 21 (2002) 608–617. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||