[1] S. Maass, T. Rehm, M. Kraume, Prediction of drop sizes for liquid-liquid systems in stirred slim reactors: Part II: Multi stage impellers, Chem. Eng. J. 168 (2) (2011) 827-838. [2] F. Azizi, A.M. Al Taweel, Inter-phase mass transfer in turbulent liquid-liquid dispersions: A comparative analysis of models, Chem. Eng. J. 179 (2012) 231-241. [3] M.P. Vasilev, R.S. Abiev, Turbulent droplets dispersion in a pulsating flow type apparatus-New type of static disperser, Chem. Eng. J. 349 (2018) 646-661. [4] D.Y. Li, A. Buffo, W. Podgorska, D.L. Marchisio, Z.M. Gao, Investigation of droplet breakup in liquid-liquid dispersions by CFD-PBM simulations: The influence of the surfactant type, Chin. J. Chem. Eng. 25 (10) (2017) 1369-1380. [5] Z.K. Zhuang, J.T. Yan, C.L. Sun, H.Q. Wang, Y.J. Wang, Z.B. Wu, The numerical simulation of a new double swirl static mixer for gas reactants mixing, Chin. J. Chem. Eng. 28 (9) (2020) 2438-2446. [6] S. Middleman, Drop Size Distributions Produced by Turbulent Pipe Flow of Immiscible Fluids through a Static Mixer, Ind. Eng. Chem. Proc. Des. Dev. 13 (1) (1974) 78-83. [7] H.P. Grace, Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems, Chem. Eng. Commun. 14 (3-6) (1982) 225-277. [8] P.D. Berkman, R.V. Calabrese, Dispersion of viscous liquids by turbulent flow in a static mixer, AIChE. J. 34 (4) (1988) 602-609. [9] Q. Cao, J.F. Zhou, Y. Qian, S.Y. Yang, Three-Dimensional Model on Liquid-Liquid Mass Transfer of the Kenics Static Mixer: Considering Dynamic Droplet Size Distribution, Ind. Eng. Chem. Res. 62 (27) (2023) 10507-10522. [10] B.W. Nyande, K. Mathew Thomas, R. Lakerveld, CFD Analysis of a Kenics Static Mixer with a Low Pressure Drop under Laminar Flow Conditions, Ind. Eng. Chem. Res. 60 (14) (2021) 5264-5277. [11] H. Yang, X.Y. Yang, X. Dong, Z.J. Lu, Z.S. Bai, Y.L. Wang, F.L. Gao, Recent progress in hydrodynamic characteristics research and application of annular centrifugal extractors, Front. Chem. Sci. Eng. 16 (6) (2022) 854-873. [12] X.P. Guan, N. Yang, K.D.P. Nigam, Prediction of Droplet Size Distribution for High Pressure Homogenizers with Heterogeneous Turbulent Dissipation Rate, Ind. Eng. Chem. Res. 59 (9) (2020) 4020-4032. [13] X.Z. Chen, Z.H. Luo, W.C. Yan, Y.H. Lu, I.S. Ng, Three-dimensional CFD-PBM coupled model of the temperature fields in fluidized-bed polymerization reactors, AIChE. J. 57 (2011) 3351-3366. [14] D.M. Hobbs, P.D. Swanson, F.J. Muzzio, Numerical characterization of low Reynolds number flow in the Kenics static mixer, Chem. Eng. Sci. 53 (8) (1998) 1565-1584. [15] H.S. Song, S.P. Han, A general correlation for pressure drop in a Kenics static mixer, Chem. Eng. Sci. 60 (21) (2005) 5696-5704. [16] W.F.C. van Wageningen, D. Kandhai, R.F. Mudde, H.E.A. van den Akker, Dynamic flow in a Kenics static mixer: An assessment of various CFD methods, AIChE. J. 50 (8) (2004) 1684-1696. [17] M.M. Haddadi, S.H. Hosseini, D. Rashtchian, G. Ahmadi, CFD modeling of immiscible liquids turbulent dispersion in Kenics static mixers: Focusing on droplet behavior, Chin. J. Chem. Eng. 28 (2) (2020) 348-361. [18] T.F. Wang, Simulation of bubble column reactors using CFD coupled with a population balance model, Front. Chem. Sci. Eng. 5 (2) (2011) 162-172. [19] Q. Li, J.C. Cheng, C. Yang, Z.S. Mao, CFD-PBE-PBE simulation of an airlift loop crystallizer, Can. J. Chem. Eng. 96 (6) (2018) 1382-1395. [20] G.A. Farzi, N. Rezazadeh, A. Parsian Nejad, Homogenization Efficiency of Two Immiscible Fluids in Static Mixer Using Droplet Tracking Technique, J. Dispers. Sci. Technol. 37 (10) (2016) 1486-1493. [21] H.B. Meng, J.B. Wang, Y.F. Yu, Z.Y. Wang, J.H. Wu, CFD-PBM Numerical Study on Liquid-Liquid Dispersion in the Q-Type Static Mixer, Ind. Eng. Chem. Res. 60 (49) (2021) 18121-18135. [22] Z. Jaworski, P. Pianko-Oprych, D.L. Marchisio, A.W. Nienow, CFD modelling of turbulent drop breakage in a kenics static mixer and comparison with experimental data, Chem. Eng. Res. Des. 85 (5) (2007) 753-759. [23] F. Azizi, A.M. Al Taweel, Turbulently flowing liquid-liquid dispersions. Part I: Drop breakage and coalescence, Chem. Eng. J. 166 (2) (2011) 715-725. [24] Z.T. Jia, L.L. Xu, X.X. Duan, Z.S. Mao, Q.H. Zhang, C. Yang, CFD simulation of flow and mixing characteristics in a stirred tank agitated by improved disc turbines, Chin. J. Chem. Eng. 50 (2022) 95-107. [25] S.H. Hosseini, S. Shojaee, G. Ahmadi, M. Zivdar, Computational fluid dynamics studies of dry and wet pressure drops in structured packings, J. Ind. Eng. Chem. 18 (4) (2012) 1465-1473. [26] Y.X. Liao, D. Lucas, A literature review on mechanisms and models for the coalescence process of fluid particles, Chem. Eng. Sci. 65 (10) (2010) 2851-2864. [27] J. Abrahamson, Collision rates of small particles in a vigorously turbulent fluid, Chem. Eng. Sci. 30 (11) (1975) 1371-1379. [28] C.A. Coulaloglou, L.L. Tavlarides, Description of interaction processes in agitated liquid-liquid dispersions, Chem. Eng. Sci. 32 (11) (1977) 1289-1297. [29] F. Lehr, M. Millies, D. Mewes, Bubble-Size distributions and Flow Fields in Bubble Columns, AIChE. J. 48 (11) (2002) 2426-2443. [30] H.A. Luo, H.F. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE. J. 42 (5) (1996) 1225-1233. [31] M.J. Hounslow, R.L. Ryall, V.R. Marshall, A discretized population balance for nucleation, growth, and aggregation, AIChE. J. 34 (11) (1988) 1821-1832. [32] Y.X. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64 (15) (2009) 3389-3406. [33] N. Lebaz, N. Sheibat-Othman, Modeling Emulsification in Static Mixers: Equilibrium Correlations versus Population Balance Equations, Chem. Eng. Technol. 42 (8) (2019) 1691-1701. [34] D.M. Hobbs, F.J. Muzzio, Optimization of a static mixer using dynamical systems techniques, Chem. Eng. Sci. 53 (18) (1998) 3199-3213. [35] D.M. Hobbs, F.J. Muzzio, Effects of injection location, flow ratio and geometry on kenics mixer performance, AIChE. J. 43 (12) (1997) 3121-3132. |