中国化学工程学报 ›› 2024, Vol. 73 ›› Issue (9): 176-188.DOI: 10.1016/j.cjche.2024.05.025
Cunning Wang1, Xingxun Li1, Qingping Li2, Guangjin Chen1, Changyu Sun1
收稿日期:
2023-11-23
修回日期:
2024-05-25
接受日期:
2024-05-27
出版日期:
2024-11-21
发布日期:
2024-07-04
通讯作者:
Xingxun Li,E-mail:lixingxun@cup.edu.cn
基金资助:
Cunning Wang1, Xingxun Li1, Qingping Li2, Guangjin Chen1, Changyu Sun1
Received:
2023-11-23
Revised:
2024-05-25
Accepted:
2024-05-27
Online:
2024-11-21
Published:
2024-07-04
Contact:
Xingxun Li,E-mail:lixingxun@cup.edu.cn
Supported by:
摘要: The research on the thermal property of the hydrate has recently made great progress, including the understanding of hydrate thermal conductivity and effective thermal conductivity (ETC) of hydrate-bearing sediment. The thermal conductivity of hydrate is of great significance for the hydrate-related field, such as the natural gas hydrate exploitation and prevention of the hydrate plugging in oil or gas pipelines. In order to obtain a comprehensive understanding of the research progress of the hydrate thermal conductivity and the ETC of hydrate-bearing sediment, the literature on the studies of the thermal conductivity of hydrate and the ETC of hydrate-bearing sediment were summarized and reviewed in this study. Firstly, experimental studies of the reported measured values and the temperature dependence of the thermal conductivity of hydrate were discussed and reviewed. Secondly, the studies of the experimental measurements of the ETC of hydrate-bearing sediment and the effects of temperature, porosity, hydrate saturation, water saturation, thermal conductivity of porous medium, phase change, and other factors on the ETC of hydrate-bearing sediment were discussed and reviewed. Thirdly, the research progress of modeling on the ETC of the hydrate-bearing sediment was reviewed. The thermal conductivity determines the heat transfer capacity of the hydrate reservoir and directly affects the hydrate exploitation efficiency. Future efforts need to be devoted to obtain experimental data of the ETC of hydrate reservoirs and establish models to accurately predict the ETC of hydrate-bearing sediment.
Cunning Wang, Xingxun Li, Qingping Li, Guangjin Chen, Changyu Sun. Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment[J]. 中国化学工程学报, 2024, 73(9): 176-188.
Cunning Wang, Xingxun Li, Qingping Li, Guangjin Chen, Changyu Sun. Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment[J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 176-188.
[1] P. Englezos, Clathrate hydrates, Ind. Eng. Chem. Res., 32(7), (1993)1251-1274. [2] G.D. Holder, Clathrate hydrates of natural gases, 2nd ed. revised and expanded, J. Am. Chem. Soc., 120(43), (1998)11212. [3] R. Boswell, T.S. Collett, Current perspectives on gas hydrate resources, Energy Environ. Sci. 4 (4) (2011) 1206-1215. [4] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.S. Li, Review of natural gas hydrates as an energy resource: Prospects and challenges, Appl. Energy 162 (2016) 1633-1652. [5] X.S. Li, C.G. Xu, Y. Zhang, X.K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate: a review, Appl. Energy 172 (2016) 286-322. [6] W.N. Wei, B. Li, Q. Gan, Y.L. Li, Research progress of natural gas hydrate exploitation with CO2 replacement: a review, Fuel 312 (2022) 122873. [7] G. Zhang, J. Li, H.W. Yang, G.H. Liu, Q. Pang, T. Wu, H.L. Huang, Simulation research on solid fluidization exploitation of deepwater superficial layer natural gas hydrate reservoirs based on double-layer continuous pipe, J. Nat. Gas Sci. Eng. 108 (2022) 104828. [8] X.M. Zhang, S.L. Zhang, S.Q. Yin, G.Y. He, J.P. Li, Q.B. Wu, Research progress of the kinetics on natural gas hydrate replacement by CO2-containing mixed gas: a review, J. Nat. Gas Sci. Eng. 108 (2022) 104837. [9] J.F. Zhao, L. Xu, X.W. Guo, Q.P. Li, X. Lv, Q. Fan, J. Zhao, H.S. Dong, B. Wang, L. Yang, Enhancing the gas production efficiency of depressurization-induced methane hydrate exploitation via fracturing, Fuel 288 (2021) 119740. [10] C.L. Bassani, A.K. Sum, J.M. Herri, R.E.M. Morales, A. Cameirao, A multiscale approach for gas hydrates considering structure, agglomeration, and transportability under multiphase flow conditions: II. growth kinetic model, Ind. Eng. Chem. Res. 59 (5) (2020) 2123-2144. [11] N. Choudhary, S. Das, S. Roy, R. Kumar, Effect of polyvinylpyrrolidone at methane hydrate-liquid water interface. Application in flow assurance and natural gas hydrate exploitation, Fuel 186 (2016) 613-622. [12] L. Ding, B.H. Shi, X.F. Lv, Y. Liu, H.H. Wu, W. Wang, J. Gong, Hydrate Formation and plugging mechanisms in different gas-liquid flow patterns, Ind. Eng. Chem. Res. 56 (14) (2017) 4173-4184. [13] L. Ding, B.H. Shi, J.Q. Wang, Y. Liu, X.F. Lv, H.H. Wu, W. Wang, X. Lou, J. Gong, Hydrate deposition on cold pipe walls in water-in-oil (W/O) emulsion systems, Energy Fuels 31 (9) (2017) 8865-8876. [14] X. Duan, B.H. Shi, C.Y. Ruan, J.P. Jia, S.F. Song, Q.Y. Liao, Y.C. Chen, S.H. Chen, J.N. Wang, H.Y. Yao, J. Gong, Quantitative assessment of hydrate blockage risk in pipelines based on reliability theory, J. Nat. Gas Sci. Eng. 98 (2022) 104345. [15] D. Lee, W. Go, Y. Seo, Synergistic kinetic inhibition of amino acids and ionic liquids on CH4 hydrate for flow assurance, Fuel 263 (2020) 116689. [16] Y. Liu, B.H. Shi, L. Ding, Y. Yong, Y. Zhang, Q.L. Ma, X.F. Lv, S.F. Song, J.H. Yang, W. Wang, J. Gong, Investigation of hydrate agglomeration and plugging mechanism in low-wax-content water-in-oil emulsion systems, Energy Fuels 32 (9) (2018) 8986-9000. [17] G.C. Song, Y.X. Li, A.K. Sum, Hydrate management in deadlegs: thermal conductivity of hydrate deposits, Energy Fuels 35 (4) (2021) 3112-3118. [18] M.W. Sun, A. Firoozabadi, Gas hydrate powder formation-Ultimate solution in natural gas flow assurance, Fuel 146 (2015) 1-5. [19] Z.W. Sun, K.J. Shi, D.W. Guan, X. Lv, J.G. Wang, W.G. Liu, Q.P. Li, H.Y. Yao, L. Yang, J.F. Zhao, Current flow loop equipment and research in hydrate-associated flow assurance, J. Nat. Gas Sci. Eng. 96 (2021) 104276. [20] Z.C. Cheng, S.J. Wang, N. Xu, W.G. Liu, Y.C. Zhao, J.F. Zhao, L.L. Jiang, J.N. Zheng, Quantitative analysis of methane hydrate formation in size-varied porous media for gas storage and transportation application, Fuel 301 (2021) 121021. [21] C.R. Shi, S. Wang, H.Q. Liu, L.X. Zhang, M.J. Yang, Y.C. Song, J.F. Zhao, Z. Ling, Pyrolytic aerogels with tunable surface groups for efficient methane solidification storage via gas hydrates, Fuel 331 (2023) 125716. [22] Z.G. Sun, R.Z. Wang, R.S. Ma, K.H. Guo, S.S. Fan, Natural gas storage in hydrates with the presence of promoters, Energy Convers. Manag. 44 (17) (2003) 2733-2742. [23] T. Uchida, I.Y. Ikeda, S. Takeya, Y. Kamata, R. Ohmura, J. Nagao, O.Y. Zatsepina, B.A. Buffett, Kinetics and stability of CH4-CO2 mixed gas hydrates during formation and long-term storage, Chemphyschem 6 (4) (2005) 646-654. [24] H.P. Veluswamy, R. Kumar, P. Linga, Hydrogen storage in clathrate hydrates: Current state of the art and future directions, Appl. Energy 122 (2014) 112-132. [25] M.J. Yang, F. Li, B.B. Chen, J.N. Zheng, L.L. Jiang, Y.C. Song, Kinetics and spatial distribution of tetrahydrofuran/methane hydrate formation in an unstirred reactor: Application in natural gas storage, Fuel 300 (2021) 121011. [26] S. Kang, H. Lee, Recovery of CO2 from flue gas using gas hydrate, Environ. Sci. Technol., 34(20), (2000)4397-4400. [27] Y. Lee, Y.J. Seo, T. Ahn, J. Lee, J.Y. Lee, S.J. Kim, Y. Seo, CH4-Flue gas replacement occurring in sH hydrates and its significance for CH4 recovery and CO2 sequestration, Chem. Eng. J. 308 (2017) 50-58. [28] X.S. Li, C.G. Xu, Z.Y. Chen, H.J. Wu, Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride, Energy 35 (9) (2010) 3902-3908. [29] P. Linga, R. Kumar, P. Englezos, Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures, Chem. Eng. Sci. 62 (16) (2007) 4268-4276. [30] P. Linga, R. Kumar, P. Englezos, The clathrate hydrate process for post and pre-combustion capture of carbon dioxide, J. Hazard. Mater. 149 (3) (2007) 625-629. [31] D.L. Zhong, P. Englezos, Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation, Energy Fuels 26 (4) (2012) 2098-2106. [32] L.C. Cai, B.A. Pethica, P.G. Debenedetti, S. Sundaresan, Formation of cyclopentane methane binary clathrate hydrate in brine solutions, Chem. Eng. Sci. 141 (2016) 125-132. [33] J.H. Cha, Y. Seol, Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests, ACS Sustainable Chem. Eng. 1 (10) (2013) 1218-1224. [34] K.N. Park, S.Y. Hong, J.W. Lee, K.C. Kang, Y.C. Lee, M.G. Ha, J.D. Lee, A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+), Desalination 274 (1-3) (2011) 91-96. [35] L.P. Liu, B. Ryu, Z.L. Sun, N.Y. Wu, H. Cao, W. Geng, X.R. Zhang, Y.G. Jia, C.L. Xu, L. Guo, L.B. Wang, Monitoring and research on environmental impacts related to marine natural gas hydrates: Review and future perspective, J. Nat. Gas Sci. Eng. 65 (2019) 82-107. [36] K.A. Kvenvolden, Gas hydrates-geological perspective and global change, Rev. Geophys. 31 (2) (1993) 173-187. [37] M. Maslin, M. Owen, S. Day, D. Long, Linking continental-slope failures and climate change: Testing the clathrate Gun hypothesis, Geology 32 (1) (2004) 53. [38] K.A. Kvenvolden, Potential effects of gas hydrate on human welfare, Proc. Natl. Acad. Sci. USA 96 (7) (1999) 3420-3426. [39] M.A. Maslin, M. Owen, R.A. Betts, S.J. Day, T. Dunkley Jones, A. Ridgwell, B. Mcguire, R.A. Betts, C. Kilburn, M.A. Maslin, D. Pyle, J. Smellie, D. Tappin, Gas hydrates; past and future geohazard? Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 368(1919), (2010)2369-2393. [40] M.F. Nixon, J. Lh Grozic, Submarine slope failure due to gas hydrate dissociation: a preliminary quantification, Can. Geotech. J. 44 (3) (2007) 314-325. [41] S. Shen, Y.H. Li, X. Sun, L. Wang, Y.C. Song, Stress behavior of hydrate-bearing sands with changing temperature and hydrate saturation, J. Nat. Gas Sci. Eng. 98 (2022) 104389. [42] Y.C. Liu, L.Q. Shan, B.Y. Guo, M.G. Sun, G.T. Wang, Q. Wang, Numerical solutions of heat transfer problems in gas production from seabed gas hydrates, J. Petrol. Sci. Eng. 188 (2020) 106824. [43] S. Liu, Y.P. Liang, B. Li, Q.C. Wan, X. Han, Interaction relationship analysis between heat transfer and hydrate decomposition for optimization exploitation, Fuel 256 (2019) 115742. [44] J.F. Gabitto, C. Tsouris, Physical properties of gas hydrates: a review, J. Thermodyn. 2010 (2010) 271291. [45] Y.Q. Liao, Z.Y. Wang, M.Z. Chao, X.H. Sun, J.T. Wang, B.Y. Zhou, B.J. Sun, Coupled wellbore-reservoir heat and mass transfer model for horizontal drilling through hydrate reservoir and application in wellbore stability analysis, J. Nat. Gas Sci. Eng. 95 (2021) 104216. [46] S.C. Sun, L.L. Gu, Z.D. Yang, H.F. Lin, Y.M. Li, Thermophysical properties of natural gas hydrates: a review, Nat. Gas Ind. B 9 (3) (2022) 246-263. [47] D. Elustondo, M.P. Elustondo, M.J. Urbicain, New thermal conductivity probe design based on the analysis of error sources, J. Food Eng. 48 (4) (2001) 325-333. [48] W.F. Waite, B.J. de Martin, S.H. Kirby, J. Pinkston, C.D. Ruppel, Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand, Geophys. Res. Lett. 29 (24) (2002) 2229. [49] W.F. Waite, L.A. Stern, S.H. Kirby, W.J. Winters, D.H. Mason, Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate, Geophys. J. Int. 169 (2) (2007) 767-774. [50] S. Dai, J.H. Cha, E.J. Rosenbaum, W. Zhang, Y. Seol, Thermal conductivity measurements in unsaturated hydrate-bearing sediments, Geophys. Res. Lett. 42 (15) (2015) 6295-6305. [51] D.L. Li, J.W. Du, S. He, D.Q. Liang, X.Y. Zhao, X.Y. Yang, Measurement and modeling of the effective thermal conductivity for porous methane hydrate samples, Sci. China Chem. 55 (3) (2012) 373-379. [52] D.L. Li, D.Q. Liang, H. Peng, L.H. Wan, Thermal conductivities of methane-methylcyclohexane and tetrabutylammonium bromide clathrate hydrate, J. Therm. Anal. Calorim. 123 (2) (2016) 1391-1397. [53] M. Muraoka, N. Susuki, H. Yamaguchi, T. Tsuji, Y. Yamamoto, Protocol for measuring the thermal properties of a supercooled synthetic Sand-water-gas-methane hydrate sample, J. Vis. Exp. (109) (2016) 53956. [54] S.C. Sun, Y.C. Hao, Y.J. Sun, P. Li, C.X. Zhang, Study on the non-in situ measurement method for hydrate thermal conductivity, Int. J. Energy Res. 44 (11) (2020) 9112-9126. [55] S.C. Sun, X. Jin, C.L. Liu, Q.G. Meng, Y. Zhang, Study on in situ measurement method of THF hydrate thermal conductivity, Int. J. Heat Mass Transf. 127 (2018) 88-96. [56] A.I. Krivchikov, B.Y. Gorodilov, O.A. Korolyuk, V.G. Manzhelii, H. Conrad, W. Press, Thermal conductivity of methane-hydrate, J. Low Temp. Phys. 139 (5) (2005) 693-702. [57] A.I. Krivchikov, O.O. Romantsova, O.A. Korolyuk, The effect of proton ordering on the thermal conductivity of clathrate tetrahydrofuran hydrate, Low Temp. Phys. 34 (8) (2008) 648-654. [58] J.F. Zhao, B. Wang, L. Yang, C.X. Cheng, Y.C. Song, A novel apparatus for in situ measurement of thermal conductivity of hydrate-bearing sediments, Rev. Sci. Instrum. 86 (8) (2015) 085110. [59] C.Y. Yuan, Z.Y. Zhang, J. Zhu, J.F. Zhao, L. Yang, L.X. Zhang, Y.C. Song, D.W. Tang, Ultralow thermal conductivity in tetrahydrofuran clathrate hydrate, Appl. Phys. Lett. 119 (13) (2021) 133902. [60] J. Zhu, X.W. Wu, D.M. Lattery, W. Zheng, X.J. Wang, The ultrafast laser pump-probe technique for thermal characterization of materials with micro/nanostructures, Nanoscale Microscale Thermophys. Eng. 21 (3) (2017) 177-198. [61] M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials, Mater. Sci. Eng. R Rep. 63 (1) (2008) 1-30. [62] X.W. Cao, K.R. Yang, H.C. Wang, J. Bian, Modelling of hydrate dissociation in multiphase flow considering particle behaviors, mass and heat transfer, Fuel 306 (2021) 121655. [63] Y.C. Song, J.Q. Wang, Y. Liu, J.F. Zhao, Analysis of heat transfer influences on gas production from methane hydrates using a combined method, Int. J. Heat Mass Transf. 92 (2016) 766-773. [64] L.H. Wan, D.Q. Liang, N.Y. Wu, J.N. Guan, Molecular dynamics simulations of the mechanisms of thermal conduction in methane hydrates, Sci. China Chem. 55 (1) (2012) 167-174. [65] J.F. Zhao, D. Liu, M.J. Yang, Y.C. Song, Analysis of heat transfer effects on gas production from methane hydrate by depressurization, Int. J. Heat Mass Transf. 77 (2014) 529-541. [66] O. Andersson, H. Suga, Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates, J. Phys. Chem. Solids 57 (1) (1996) 125-132. [67] J.S. Tse, M.A. White, Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate, J. Phys. Chem. 92 (17) (1988) 5006-5011. [68] C.N. Wang, X.X. Li, S. Liang, Q.P. Li, W.X. Pang, B. Zhao, G.J. Chen, C.Y. Sun, Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle, Energy 285 (2023) 129338. [69] S.C. Sun, L.L. Gu, Z.D. Yang, Y.M. Li, C.X. Zhang, A new effective thermal conductivity model of methane hydrate-bearing sediments considering hydrate distribution patterns, Int. J. Heat Mass Transf. 183 (2022) 122071. [70] D.D. Wu, S.X. Li, Y. Guo, L. Liu, Z.Q. Wang, A novel model of effective thermal conductivity for gas hydrate-bearing sediments integrating the hydrate saturation and pore morphology evolution, Fuel 324 (2022) 124825. [71] J. He, X.S. Li, Z.Y. Chen, Q.P. Li, Z.M. Xia, Y. Zhang, Y. Wang, C.Y. You, Effective thermal conductivity changes of the hydrate-bearing quartz sands in depressurization and soaking, J. Nat. Gas Sci. Eng. 89 (2021) 103878. [72] X.X. Li, R.C. Wei, Q.P. Li, W.X. Pang, Q. Fan, G.J. Chen, C.Y. Sun, Experimental investigation on the effective thermal conductivities of different hydrate-bearing sediments, Petrol. Sci. 20 (4) (2023) 2479-2487. [73] R.P. Wei, Y.Q. Xia, A.X. Qu, X. Lv, Q. Fan, L.X. Zhang, Y. Zhang, J.F. Zhao, L. Yang, Dependence of thermal conductivity on the phase transition of gas hydrate in clay sediments, Fuel 317 (2022) 123565. [74] R.D. Stoll, G.M. Bryan, Physical properties of sediments containing gas hydrates, J. Geophys. Res. 84 (B4) (1979) 1629-1634. [75] A.I. Krivchikov, V.G. Manzhelii, O.A. Korolyuk, B.Y. Gorodilov, O.O. Romantsova, Thermal conductivity of tetrahydrofuran hydrate, Phys. Chem. Chem. Phys. 7 (5) (2005) 728-730. [76] J.S. Tse, Localized oscillators and heat conduction in clathrate hydrates, J. Inclusion Phenom. Mol. Recognit. Chem. 17 (3) (1994) 259-266. [77] J. Zhao, S.C. Sun, C.L. Liu, Q.G. Meng, Thermal conductivity and thermal diffusivity of methane hydrate formed from compacted granular ice, Heat Mass Transf. 54 (11) (2018) 3287-3295. [78] D.Z. Huang, S.S. Fan, Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution, J. Chem. Eng. Data 49 (5) (2004) 1479-1482. [79] E.J. Rosenbaum, N.J. English, J.K. Johnson, D.W. Shaw, R.P. Warzinski, Thermal conductivity of methane hydrate from experiment and molecular simulation, J. Phys. Chem. B 111 (46) (2007) 13194-13205. [80] A. Kar, A. Bhati, P.V. Acharya, A. Mhadeshwar, P. Venkataraman, T.A. Barckholtz, V. Bahadur, Diffusion-based modeling of film growth of hydrates on gas-liquid interfaces, Chem. Eng. Sci. 234 (2021) 116456. [81] S.L. Li, C.Y. Sun, B. Liu, X.J. Feng, F.G. Li, L.T. Chen, G.J. Chen, Initial thickness measurements and insights into crystal growth of methane hydrate film, AlChE. J. 59 (6) (2013) 2145-2154. [82] Z. Liu, H. Li, L.T. Chen, B.J. Sun, A new model of and insight into hydrate film lateral growth along the gas-liquid interface considering natural convection heat transfer, Energy Fuels 32 (2) (2018) 2053-2063. [83] T. Mochizuki, Y.H. Mori, Simultaneous mass and heat transfer to/from the edge of a clathrate-hydrate film causing its growth along a water/guest-fluid phase boundary, Chem. Eng. Sci. 171 (2017) 61-75. [84] X.X. Li, C.N. Wang, Q.P. Li, W.X. Pang, G.J. Chen, C.Y. Sun, Experimental observation of formation and dissociation of methane hydrate in a micromodel, Chem. Eng. Sci. 248 (2022) 117227. [85] D. Kashchiev, A. Firoozabadi, Nucleation of gas hydrates, J. Cryst. Growth 243 (3-4) (2002) 476-489. [86] L.A. Stern, S.H. Kirby, W.B. Durham, Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice, Science 273 (5283) (1996) 1843-1848. [87] J.W. Du, H.J. Li, L.G. Wang, Cooperative effect of surfactant addition and gas-inducing agitation on methane hydrate formation rate, Fuel 230 (2018) 134-137. [88] Y.Y. He, E.S.J. Rudolph, P.L.J. Zitha, M. Golombok, Kinetics of CO2 and methane hydrate formation: an experimental analysis in the bulk phase, Fuel 90 (1) (2011) 272-279. [89] X.X. Li, C.N. Wang, S. Liang, X.Q. Guo, Q. Sun, Experimental visualization of cyclopentane hydrate dissociation behavior in a microfluidic chip, Chem. Eng. Sci. 227 (2020) 115937. [90] Y. Zhong, R.E. Rogers, Surfactant effects on gas hydrate formation, Chem. Eng. Sci. 55 (19) (2000) 4175-4187. [91] P.C. Chen, W.L. Huang, L.A. Stern, Methane hydrate synthesis from ice: influence of pressurization and ethanol on optimizing formation rates and hydrate yield, Energy Fuels 24 (4) (2010) 2390-2403. [92] M.J. Hwang, D.A. Wright, A. Kapur, G.D. Holder, An experimental study of crystallization and crystal growth of methane hydrates from melting ice, J. Inclusion Phenom. Mol. Recognit. Chem. 8 (1) (1990) 103-116. [93] W.F. Kuhs, D.K. Staykova, A.N. Salamatin, Formation of methane hydrate from polydisperse ice powders, J. Phys. Chem. B 110 (26) (2006) 13283-13295. [94] B. Wang, Z. Fan, P.F. Lv, J.F. Zhao, Y.C. Song, Measurement of effective thermal conductivity of hydrate-bearing sediments and evaluation of existing prediction models, Int. J. Heat Mass Transf. 110 (2017) 142-150. [95] V.A. Vlasov, Diffusion model of gas hydrate formation from ice, Heat Mass Transf. 52 (3) (2016) 531-537. [96] V.A. Vlasov, Simplified diffusion model of gas hydrate formation from ice, Int. J. Heat Mass Transf. 165 (2021) 120701. [97] C.A. Tulk, D.D. Klug, J.A. Ripmeester, Raman spectroscopic studies of THF clathrate hydrate, J. Phys. Chem. A 102 (45) (1998) 8734-8739. [98] X.K. Ruan, X.S. Li, C.G. Xu, A review of numerical research on gas production from natural gas hydrates in China, J. Nat. Gas Sci. Eng. 85 (2021) 103713. [99] H.Y. Ye, X.Z. Wu, D.Y. Li, Y.J. Jiang, B. Gong, A novel thermal stimulation approach for natural gas hydrate exploitation-the application of the self-entry energy compensation device in the Shenhu Sea, J. Nat. Gas Sci. Eng. 105 (2022) 104723. [100] B. Ghanbarian, H. Daigle, Thermal conductivity in porous media: Percolation-based effective-medium approximation, Water Resour. Res. 52 (1) (2016) 295-314. [101] T.S. Yun, J.C. Santamarina, Fundamental study of thermal conduction in dry soils, Granul. Matter 10 (3) (2008) 197-207. [102] D.D. Cortes, A.I. Martin, T.S. Yun, F.M. Francisca, J.C. Santamarina, C. Ruppel, Thermal conductivity of hydrate-bearing sediments, J. Geophys. Res. 114 (B11) (2009) B11103. [103] Y.J. Kim, T.S. Yun, Thermal conductivity of methane hydrate-bearing Ulleung Basin marine sediments: Laboratory testing and numerical evaluation, Mar. Petrol. Geol. 47 (2013) 77-84. [104] J. He, X.S. Li, Z.Y. Chen, C.Y. You, K.F. Yan, Z.M. Xia, Q.P. Li, Effect of hydrate distribution on effective thermal conductivity changes during hydrate formation in hydrate-bearing quartz sands, Int. J. Heat Mass Transf. 174 (2021) 121289. [105] X.X. Li, R.C. Wei, Q.P. Li, W.X. Pang, G.J. Chen, C.Y. Sun, Application of infrared thermal imaging technique in in situ temperature field measurement of hydrate-bearing sediment under thermal stimulation, Energy 265 (2023) 126321. [106] J. Fu, J.M. Mo, S.J. Liu, W.Z. Yi, Y.S. Yu, N.Y. Wu, X.L. Chen, Q.C. Su, X.S. Li, Thermodynamic characteristics of methane hydrate formation in high-pressure microcalorimeter under different reaction kinetics, Fuel 332 (2023) 126072. [107] S.C. Sun, J. Zhao, D.J. Yu, Dissociation enthalpy of methane hydrate in salt solution, Fluid Phase Equilib. 456 (2018) 92-97. [108] M.J. Yang, Y.C. Song, L.L. Jiang, W. Jing, W.G. Liu, B.L. Dou, The effects of porous medium and temperature on exothermic tetrahydrofuran hydrate formation, J. Chem. Thermodyn. 78 (2014) 167-174. [109] Y. Dong, J.S. McCartney, N. Lu, Critical review of thermal conductivity models for unsaturated soils, Geotech. Geol. Eng. 33 (2) (2015) 207-221. [110] D.Z. Huang, S.S. Fan, Measuring and modeling thermal conductivity of gas hydrate-bearing sand, J. Geophys. Res. 110 (B1) (2005) B1311. [111] S.C. Sun, J.R. Zhao, J. Zhao, Y.C. Hao, J. Yang, The effective thermal conductivity of methane hydrate-bearing seasand, J. Chem. Thermodyn. 132 (2019) 423-431. [112] D.L. Li, D.Q. Liang, Experimental study on the effective thermal conductivity of methane hydrate-bearing sand, Int. J. Heat Mass Transf. 92 (2016) 8-14. [113] L. Yang, J.F. Zhao, W.G. Liu, M.J. Yang, Y.C. Song, Experimental study on the effective thermal conductivity of hydrate-bearing sediments, Energy 79 (2015) 203-211. [114] R.P. Wei, K.J. Shi, X.W. Guo, T. Wang, X. Lv, Q.P. Li, Y. Zhang, J.F. Zhao, L. Yang, Evolving thermal conductivity upon formation and decomposition of hydrate in natural marine sediments, Fuel 302 (2021) 121141. [115] R.P. Wei, L. Yang, J.F. Zhao, J. Wang, Y.L. Wang, Z. Ling, Y.H. Li, M.J. Yang, Y.C. Song, Evolution of effective thermal conductivity during hydrate formation and decomposition in natural sediments, Energy Procedia 158 (2019) 5825-5831. [116] W. Woodside, J.H. Messmer, Thermal conductivity of porous media. I. unconsolidated sands, J. Appl. Phys. 32 (9) (1961) 1688-1699. [117] M. Muraoka, M. Ohtake, N. Susuki, H. Morita, M. Oshima, Y. Yamamoto, Thermal properties of highly saturated methane hydrate-bearing sediments recovered from the Krishna-Godavari Basin, Mar. Petrol. Geol. 108 (2019) 321-331. [118] X.L. Huai, W.W. Wang, Z.G. Li, Analysis of the effective thermal conductivity of fractal porous media, Appl. Therm. Eng. 27 (17-18) (2007) 2815-2821. [119] L. Yang, J.F. Zhao, B. Wang, W.G. Liu, M.J. Yang, Y.C. Song, Effective thermal conductivity of methane hydrate-bearing sediments: Experiments and correlations, Fuel 179 (2016) 87-96. [120] J.G. Beltran, P. Servio, Morphological investigations of Methane-Hydrate films formed on a glass surface, Cryst. Growth Des. 10 (10) (2010) 4339-4347. [121] E. Spangenberg, M. Priegnitz, K. Heeschen, J.M. Schicks, Are laboratory-formed hydrate-bearing systems analogous to those in nature? J. Chem. Eng. Data 60 (2) (2015) 258-268. [122] E. Chuvilin, B. Bukhanov, Effect of hydrate formation conditions on thermal conductivity of gas-saturated sediments, Energy Fuels 31 (5) (2017) 5246-5254. [123] J.C. Feng, B. Li, X.S. Li, Y. Wang, Effects of depressurizing rate on methane hydrate dissociation within large-scale experimental simulator, Appl. Energy 304 (2021) 117750. [124] X.Y. Li, Y. Wang, X.S. Li, Y. Zhang, Z.Y. Chen, Experimental study of methane hydrate dissociation in porous media with different thermal conductivities, Int. J. Heat Mass Transf. 144 (2019) 118528. [125] P.Y. Zhang, Y. Wang, R. Jia, J. Lei, Y.M. Li, W. Guo, Dissociation characteristic of methane hydrate in clayey silt below the ice point, J. Nat. Gas Sci. Eng. 100 (2022) 104443. [126] X.J. Deng, J.W. Feng, S.W. Pan, Z.Y. Wang, J.B. Zhang, W.Q. Chen, An improved model for the migration of fluids caused by hydrate dissociation in porous media, J. Petrol. Sci. Eng. 188 (2020) 106876. [127] C.H. Yu, B.J. Sun, J.K. Ji, Z.Y. Wang, Y.H. Gao, L.T. Chen, Study on the dissociation characteristics of methane hydrate in clayey silts, Chem. Eng. Sci. 252 (2022) 117508. [128] C.R.I. Clayton, J.A. Priest, E.V.L. Rees, The effects of hydrate cement on the stiffness of some sands, Geotechnique 60 (6) (2010) 435-445. [129] J.Y. Lee, J.C. Santamarina, C. Ruppel, Volume change associated with formation and dissociation of hydrate in sediment, Geochem. Geophys. Geosyst. 11 (3) (2010) Q3007. [130] A. Masui, H. Haneda, Y. Ogata, K. Aoki, J.S. Chung, S.W. Hong, K. Koo, T. Komai, W. Koterayama, Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments, The Proceedings of the International Offshore and Polar Engineering Conference, 15, (2005)364-369. [131] J.A. Priest, E.V.L. Rees, C.R.I. Clayton, Influence of gas hydrate morphology on the seismic velocities of sands, J. Geophys. Res. 114 (B11) (2009) B11205. [132] J. Millat, M. Ross, W.A. Wakeham, M. Zalaf, The thermal conductivity of neon, methane and tetrafluoromethane, Phys. A Stat. Mech. Appl. 148 (1-2) (1988) 124-152. [133] M. Muraoka, M. Ohtake, N. Susuki, Y. Yamamoto, K. Suzuki, T. Tsuji, Thermal properties of methane hydrate-bearing sediments and surrounding mud recovered from Nankai Trough wells, J. Geophys. Res. Solid Earth 119 (11) (2014) 8021-8033. [134] X. Lyu, Q.P. Li, Y. Ge, M. Ouyang, H.X. Liu, Q. Fu, J.L. Zhu, S.W. Zhou, Analysis of physical properties of gas hydrate-bearing unconsolidated sediment samples from the ultra-deepwater area in the South China Sea, Front. Energy 16 (3) (2022) 509-520. [135] Z. Hashin, S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys. 33 (10) (1962) 3125-3131. [136] Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids 11 (2) (1963) 127-140. [137] J.G. Berryman, Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions, J. Acoust. Soc. Am. 68 (6) (1980) 1820-1831. [138] J.G. Berryman, Mixture theories for rock properties. T.J. Ahrens, ed. AGU Reference Shelf. Washington, D. C.: American Geophysical Union, (2013) 205-228. [139] J.G. Berryman, Long-wavelength propagation in composite elastic media I. Spherical inclusions, J. Acoust. Soc. Am. 68 (6) (1980) 1809-1819. [140] W.F. Waite, J.C. Santamarina, D.D. Cortes, B. Dugan, D.N. Espinoza, J. Germaine, J. Jang, J.W. Jung, T.J. Kneafsey, H. Shin, K. Soga, W.J. Winters, T.S. Yun, Physical properties of hydrate-bearing sediments, Rev. Geophys. 47 (4) (2009) RG4003. [141] J.F. Wang, J.K. Carson, M.F. North, D.J. Cleland, A new approach to modelling the effective thermal conductivity of heterogeneous materials, Int. J. Heat Mass Transf. 49 (17-18) (2006) 3075-3083. [142] O. Johansen, Thermal conductivity of soils, Hanover, CRREL, 1977. [143] M.A. O’Connell, B.A. Belanger, P.D. Haaland, Calibration and assay development using the four-parameter logistic model, Chemom. Intell. Lab. Syst. 20 (2) (1993) 97-114. [144] J.L. Kou, F.M. Wu, H.J. Lu, Y.S. Xu, F.Q. Song, The effective thermal conductivity of porous media based on statistical self-similarity, Phys. Lett. A 374 (1) (2009) 62-65. [145] Z.X. Chu, G.Q. Zhou, Y.J. Wang, X.D. Zhao, P.Q. Mo, A supplementary analytical model for the stagnant effective thermal conductivity of low porosity granular geomaterials, Int. J. Heat Mass Transf. 133 (2019) 994-1007. [146] F. Gori, S. Corasaniti, New model to evaluate the effective thermal conductivity of three-phase soils, Int. Commun. Heat Mass Transf. 47 (2013) 1-6. [147] G.S. Jia, Z.D. Ma, Y.P. Zhang, M. Zhao, X.Z. Meng, L.Y. Zhang, L.W. Jin, Series-parallel resistance method based thermal conductivity model for rock-soil with low or high porosity, Geothermics 84 (2020) 101742. [148] G.S. Jia, Z.Y. Tao, X.Z. Meng, L.Y. Zhang, J.C. Chai, L.W. Jin, A new analytical model for the estimation of three-phase rock-soil thermal conductivity for geothermal utilization, IOP Conf. Ser. Earth Environ. Sci. 268 (1) (2019) 012001. |
[1] | Yu-Jie Zhu, Yu-Zhou Chen, Yan Xie, Jin-Rong Zhong, Xiao-Hui Wang, Peng Xiao, Yi-Fei Sun, Chang-Yu Sun, Guang-Jin Chen. Microscopic experimental study on the effects of NaCl concentration on the self-preservation effect of methane hydrates under 268.15 K[J]. 中国化学工程学报, 2024, 73(9): 1-14. |
[2] | Fei Li, Tao Zhang, Li Lv, Wenxiang Tang, Yan Wang, Shengwei Tang. Effects of ionic liquids on the vapor-liquid equilibriumof 1,3,5-trioxane-water system at 101.3 kPa[J]. 中国化学工程学报, 2024, 73(9): 42-50. |
[3] | Limin Wang, Jinrong Duan, Bei Liu, Zhi Li, Guangjin Chen. The effect of ethylene-vinyl acetate copolymer on the formation process of wax crystals and hydrates[J]. 中国化学工程学报, 2024, 73(9): 109-119. |
[4] | Jinrong Zhong, Yu Tian, Yifei Sun, Li Wan, Yan Xie, Yujie Zhu, Changyu Sun, Guangjin Chen, Yuefei Zhang. The dual action of N2 on morphology regulation and mass-transfer acceleration of CO2 hydrate film[J]. 中国化学工程学报, 2024, 73(9): 120-129. |
[5] | Jie Zhang, Lei Shi, Chuanxian Li, Fei Yang, Bo Yao, Guangyu Sun. Research methods and devices for hydrate characteristics during oil and gas transportation: A review[J]. 中国化学工程学报, 2024, 73(9): 130-145. |
[6] | Bingying Han, Neng Shi, Mengjie Dong, Ye Liu, Runping Ye, Lixia Ling, Riguang Zhang, Baojun Wang. Theoretically predicted innovative palladium stripe dopingcobalt (1 1 1) surface with excellent catalytic performance for carbon monoxide oxidative coupling to dimethyl oxalate[J]. 中国化学工程学报, 2024, 73(9): 235-243. |
[7] | Dechang Cheng, Zhihong Ma, Ziyang Liu, Xiaohui Liu, Tao Liu, Weizhen Sun, Ling Zhao. Experiments and kinetic modeling of the sorbitol dehydration to isosorbide catalyzed by sulfuric acid under conditions of non-constant volume[J]. 中国化学工程学报, 2024, 73(9): 281-289. |
[8] | Xiaoyu Zhou, Xiangyi Gao, Mingmei Wang, Erwei Song, Erqiang Wang. Improving the accuracy of mechanistic models for dynamic batch distillation enabled by neural network: An industrial plant case[J]. 中国化学工程学报, 2024, 73(9): 290-300. |
[9] | Zhenguang Liu, Zexiang Ding, Yifeng Cao, Baojian Liu, Qiwei Yang, Zhiguo Zhang, Qilong Ren, Zongbi Bao. Temperature-dependent solubility of Rebaudioside A in methanol/ethanol and ethyl acetate mixtures: Experimental measurements and thermodynamic modeling[J]. 中国化学工程学报, 2024, 72(8): 164-176. |
[10] | Tianxiao Huang, Binhang Yan. Evaluation and application of kinetic models for Cu-catalyzed acetylene hydrochlorination[J]. 中国化学工程学报, 2024, 72(8): 209-219. |
[11] | Baowei Niu, Yanjie Yi, Yuwen Wei, Fuzhen Zhang, Lili Wang, Li Xia, Xiaoyan Sun, Shuguang Xiang. Phase equilibrium data prediction and process optimizationin butadiene extraction process[J]. 中国化学工程学报, 2024, 71(7): 1-12. |
[12] | Yuke Li, Yuxin Liu, Jizhen Huang, Yi Mei. Improved length of calcium sulfate crystal seeds and whiskers via ball milling and hydration treatment[J]. 中国化学工程学报, 2024, 71(7): 102-109. |
[13] | Hang Yang, Zhaojin Lu, Likun Ma, Wei Yin, Bingjie Wang, Zhishan Bai, Xiaoyong Yang. Experimental and numerical investigations on micromixing performance of multi-orifice cross-flow jet mixers[J]. 中国化学工程学报, 2024, 70(6): 63-72. |
[14] | Huashuai Wu, Gang Wang, Yong Yang, Yongwang Li. Modeling analysis of cobalt-based Fischer-Tropsch catalyst particles[J]. 中国化学工程学报, 2024, 70(6): 82-92. |
[15] | Bohui Shi, Shangfei Song, Yuchuan Chen, Shunkang Fu, Lihao Liu, Xinyao Yang, Haihao Wu, Guangjin Chen, Jing Gong. Rheological study of methane gas hydrates in the presence of micron-sized sand particles[J]. 中国化学工程学报, 2024, 70(6): 149-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||