[1] Y. Shen, G.H. Lu, Y.H. Bai, P. Lv, Z.D. Yong, J.F. Wang, X.D. Song, L.J. Yan, G.S. Yu, Structural features of residue carbon formed by gasification of different coal macerals, Fuel. 320 (2022) 123918. [2] Y.M. Wang, Y. Li, G.J. Wang, Y.F. Wu, H. Yang, L.J. Jin, S. Hu, H.Q. Hu, Effect of Fe components in red mud on catalytic pyrolysis of low rank coal, J Energy Inst. 100 (2022) 1-9. [3] X. Li, C.W. Li, H.J. Zhang, W.F. Li, Analysis on the status and problems of lignite application in China, Appl. Chem. Ind. 49 (5) (2020) 1226-1230. (in Chinese). [4] J.P. Mathews, A.L. Chaffee, The molecular representations of coal-A review, Fuel. 96 (2012) 1-14. [5] A. Tahmasebi, J.L. Yu, Y.N. Han, F.K. Yin, S. Bhattacharya, D. Stokie, Study of chemical structure changes of chinese lignite upon drying in superheated steam, microwave, and hot air, Energ Fuels. 26 (6) (2012) 3651-3660. [6] D. Choudhury, A. Sarkar, L.C. Ram, An Autopsy of Spontaneous Combustion of Lignite, Int J Coal Prep Util. 36 (2) (2016) 109-123. [7] M. Misz-Kennan, J. Kus, D. Flores, C. Avila, Z. Buckun, N. Choudhury, K. Christanis, J.P. Joubert, S. Kalaitzidis, A.I. Karayigit, M. Malecha, M. Marques, P. Martizzi, J.M.K. O'Keefe, W. Pickel, G. Predeanu, S. Pusz, J. Ribeiro, S. Rodrigues, A.K. Singh, D. Zivotic, Development of a petrographic classification system for organic particles affected by self-heating in coal waste. (An ICCP Classification System, Self-heating Working Group-Commission III), Int J Coal Geol. 220 (2020) 103411. [8] Y.N. Zhang, L. Chen, J. Deng, J.Y. Zhao, H.T. Li, H. Yang, Influence of granularity on thermal behaviour in the process of lignite spontaneous combustion, J Therm Anal Calorim. 135 (4) (2019) 2247-2255. [9] B.B. Beamish, A. Arisoy, Effect of mineral matter on coal self-heating rate, Fuel. 87 (1) (2008) 125-130. [10] X.Z. Gong, Z.C. Guo, Z. Wang, Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by differential thermal analysis (DTA), Energy. 35 (2) (2010) 506-511. [11] X.Z. Gong, S. Zhang, Catalytic effects of CeO2/Fe2O3 and inherent mineral matter on anthracite combustion reactions and its kinetic analysis, Energy Fuels. 31 (11) (2017) 12867-12874. [12] J. Xu, X.L. Zhang, T.J. Jin, Effect of Fe2O3 and K2CO3 on combustion and catalytic mechanism analysis of high ash coal from Huaibei Mining Area, Bull. Chin. Ceram. Soc. 35 (06) (2016) 1841-1846. (in Chinese). [13] B.B. Beamish, J. Theiler, Coal spontaneous combustion: Examples of the self-heating incubation process, Int J Coal Geol. 215 (2019) 103297. [14] B. Lu, J.R. Wang, L. Qiao, J.Q. Chen, Effect of electrochemical oxidation of pyrite on coal spontaneous combustion, Int J Coal Prep Util. 42 (6) (2022) 1818-1829. [15] J. Deng, X.F. Ma, Y.T. Zhang, Y.Q. Li, W.W. Zhu, Effects of pyrite on the spontaneous combustion of coal, Int J Coal Sci Techn. 2 (4) (2015) 306-311. [16] A. Arisoy, B. Beamish, Mutual effects of pyrite and moisture on coal self-heating rates and reaction rate data for pyrite oxidation, Fuel. 139 (2015) 107-114. [17] F.Q. Yang, Y. Lai, Y.Z. Song, Determination of the influence of pyrite on coal spontaneous combustion by thermodynamics analysis, Process Saf Environ. 129 (2019) 163-167. [18] C. Ding, Z.X. Li, J.R. Wang, P.B. Duanmu, B. Lu, D.M. Gao, Experimental research on the spontaneous combustion of coal with different metamorphic degrees induced by pyrite and its oxidation products, Fuel. 318 (2022) 123642. [19] C.P. Wang, Z.J. Bai, Y. Xiao, J. Deng, C.M. Shu, Effects of FeS2 on the process of coal spontaneous combustion at low temperatures, Process Saf Environ. 142 (2020) 165-173. [20] A. Saffari, F. Sereshki, M. Ataei, Evaluation effect of macerals petrographic and pyrite contents on spontaneous coal combustion in Tabas Parvadeh and Eastern Alborz coal mines in Iran, Int J Coal Prep Util. 42(1) (2022) 12-29. [21] J. Cheng, F. Zhou, X.X. Xuan, J.Z. Liu, J.H. Zhou, K.F. Cen, Comparison of the catalytic effects of eight industrial wastes rich in Na, Fe, Ca and Al on anthracite coal combustion, Fuel. 187 (1) (2017) 398-402. [22] Y.H. Liu, D.F. Che, Y.T. Li, S.E. Hui, T.M. Xu, Effect of iron compounds on coal combustion characteristics, Journal of Xi'an Jiaotong University. 34 (9) (2000) 20-24. (in Chinese). [23] C. Zou, J.X. Zhao, Investigation of iron-containing powder on coal combustion behavior, J Energy Inst. 90 (5) (2017) 797-805. [24] L. Qiao, Study on catalytic mechanism to spontaneous combustion of coal and inerting of metal compounds in coal, Ph. D. Thesis, Liaoning Technical University, 2020. (in Chinese). [25] T.T. Lv, L.Y. Kou, T. Hu, L.B. Zhang, L. Yang, Enhanced combustion of bituminous coal and semicoke mixture by ferric oxide with thermographic and kinetic analyses, Mater. 14 (24) (2021) 7696. [26] C.J. Huang, S.J. Wang, F. Wu, P. Zhu, Z.H. Zhou, J.M. Yi, The effect of waste slag of the steel industry on pulverized coal combustion, Energ Source Part A. 35 (20) (2013) 1891-1897. [27] L.B. Qin, Y.J. Zhang, J. Han, W.S. Chen, Influences of waste iron residue on combustion efficiency and polycyclic aromatic hydrocarbons release during coal catalytic combustion, Aerosol Air Qual Res. 15 (7) (2015) 2720-2729. [28] X.Z. Gong, Z.C. Guo, Z. Wang, Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3, Combust Flame. 157 (2) (2010) 351-356. [29] Y.H. Liu, D.F. Che, T.M. Xu, Catalytic reduction of SO2 during combustion of typical Chinese coals, Fuel Process Technol. 79 (2) (2002) 157-169. [30] X.L. Yao, K. Wang, W. Wang, T.T. Zhang, W. Wang, X.Y. Yang, F. Qian, H.L. Li, Reduction of polycyclic aromatic hydrocarbons (PAHs) emission from household coal combustion using ferroferric oxide as a coal burning additive, Chemosphere. 252 (2020) 126489. [31] S.S. Daood, G. Ord, T. Wilkinson, W. Nimmo, Investigation of the influence of metallic fuel improvers on coal combustion/pyrolysis, Energy Fuels. 28 (2) (2014) 1515-1523. [32] B.V. Reddy, S.N. Khanna, Self-stimulated NO reduction and CO oxidation by iron oxide clusters, Phys Rev Lett. 93 (6) (2004) 068301. [33] N. Tsubouchi, Y. Ohtsuka, Nitrogen chemistry in coal pyrolysis: catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen. Fuel Process Technol. 89 (4) (2008) 379-390. [34] S.S. Daood, G. Ord, T. Wilkinson, W. Nimmo, Fuel additive technology-NOx reduction, combustion efficiency and fly ash improvement for coal fired power stations, Fuel. 134 (2014) 293-306. [35] F. Wu, S.J. Wang, G. Zhang, P. Zhu, Z.Y. Wang, S.T. Chen, Z. Zhou. Influence of steel industrial wastes on burnout rate and NOx release during the pulverized coal catalytic combustion, J Energy Inst. 87 (2) (2014) 134-139. [36] Y.M. Song, W. Feng, Y.F. Wang, N. Li, Y.P. Ban, Y.Y. Teng, K.D. Zhi, R.X. He, H.C. Zhou, Q.S. Liu, Structure characteristics of unreacted residues in combustion of Shengli lignite and effect of adding Fe components, J. Fuel Chem. Technol. 44 (12) (2016) 1447-1456. (in Chinese). [37] Y.M. Song, W. Feng, N. Li, Y. Li, K.D. Zhi, Y.Y. Teng, R.X. He, H.C. Zhou, Q.S. Liu, Effects of demineralization on the structure and combustion properties of Shengli lignite, Fuel. 183 (2016) 659-667. [38] Z.H. Yan, D.D. Wang, R.X. He, N. Li, H.C. Zhou, Y.F. Wang, Y.M. Song, K.D. Zhi, Y.Y. Teng, Q.S. Liu, Microstructural characteristics of Shengli lignite during low-temperature oxidation and promotion effect of iron speciation, Fuel. 255 (2019) 115830. [39] Q. Zhang, J. Fang, Z.W. Meng, C. Chen, Z.H. Qin, Thermogravimetric analysis of soot combustion in the presence of ash and soluble organic fraction, Rsc Adv. 10 (55) (2020) 33436-33443. [40] Y. Yang, J. Fang, J.F. Huang, Z.H. Qin, Q. Zhang, P. Pu, S.Z. Pan, Influence of different thermal aging conditions on soot combustion with catalyst by thermogravimetric analysis, Mater. 14 (13) (2021) 3647. [41] X. Huang, J.P. Cao, X.Y. Zhao, J.X. Wang, X. Fan, Y.P. Zhao, X.Y. Wei, Pyrolysis kinetics of soybean straw using thermogravimetric analysis, Fuel. 169 (2016) 93-98. [42] Q.H. Wang, X.Y. Lu, C. Ma, Z.M. Luo, Q.W. Li, J. Deng, Y.J. Sheng, B. Peng, Comparative study of the kinetic characteristics of coal spontaneous combustion, J Therm Anal Calorim. 148 (2023) 4463-4476. [43] M.B. Zhang, Z.C. Wang, L.K. Wang, Z. Zhang, D.Y. Zhang, C.X. Li, Experimental study and thermodynamic analysis of coal spontaneous combustion characteristics, Combust Theor Model. 27(1) (2023) 118-137. [44] W. Yu, Y.P. Hsu, C.S. Tan, Synthesis of rhodium-platinum bimetallic catalysts supported on SBA-15 by chemical fluid deposition for the hydrogenation of terephthalic acid in water, Appl Catal B-Environ. 196 (2016) 185-192. [45] Y. Yamada, H. Yasuda, K. Murota, M. Nakamura, T. Sodesawa, S. Sato, Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy, J Mater Sci. 48 (2013) 8171-8198. [46] J.R. Li, J.S. Chen, Y.K. Yu, C. He, Fe-Mn-Ce/ceramic powder composite catalyst for highly volatile elemental mercury removal in simulated coal-fired flue gas, J Ind Eng Chem. 25 (2015) 352-358. [47] S.J. Wu, J.W. Lu, Z.C. Ding, N. Li, F.L. Fu, B. Tang, Cr(VI) removal by mesoporous FeOOH polymorphs: performance and mechanism, Rsc Adv. 6 (85) (2016) 82118-82130. [48] J. Yue, X.C. Jiang, Y.V. Kaneti, A. Yu, Deposition of gold nanoparticles on β-FeOOH nanorods for detecting melamine in aqueous solution, J Colloid Interf Sci. 367 (2012) 204-212. [49] H. Tanaka, N. Hatanaka, M. Muguruma, T. Ishikawa, T. Nakayama, Influence of anions on the formation of artificial steel rust particles prepared from acidic aqueous Fe(III) solution, Corros Sci. 66 (2013) 136-141. [50] M. Zhang, D.H. Han, P.X. Lu, PEDOT encapsulated β-FeOOH nanorods: synthesis, characterization and application for sodium-ion batteries, Electrochim Acta. 238 (2017) 330-336. [51] T.L. Panikorovskii, A.S. Mazur, A.V. Bazai, V.V. Shilovskikh, E.V. Galuskin, N.V. Chukanov, V.S. Rusakov, Y.M. Zhukov, E.Y. Avdontseva, S.M. Aksenov, S.V. Krivovichev, X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature, Phys Chem Miner. 44 (8) (2017) 577-593. [52] D.M. Yao, D.C. Wang, L.J. Jin, Y. Li, H. Yang, T.T. Wang, H.Q. Hu, Preparation of Ce-Mn/Fe2O3 catalysts for steam catalytic cracking of coal tar, Chemistryselect. 3 (44) (2018) 12405-12717. |