[1] T. Yan, L.C. Xu, Z.X. Zeng, W.G. Pan, Mechanism and anti-corrosion measures of carbon dioxide corrosion in CCUS: a review, iScience 27 (1) (2023) 108594. [2] L.R. Dou, L.D. Sun, W.F. Lyu, M.Y. Wang, F. Gao, M. Gao, H. Jiang, Trend of global carbon dioxide capture, utilization and storage industry and challenges and countermeasures in China, Petrol. Explor. Dev. 50 (5) (2023) 1246-1260. [3] Y. Yang, S.M. Zhang, X.P. Cao, Q. Lyu, G.Z. Lyu, C.B. Zhang, Z.Y. Li, D. Zhang, W.K. Zheng, CO2 high-pressure miscible flooding and storage technology and its application in Shengli Oilfield, China, Petrol. Explor. Dev. 51 (5) (2024) 1247-1260. [4] B.J. Dong, D.Z. Zeng, Z.M. Yu, L.L. Cai, H.Y. Yu, S.Z. Shi, G. Tian, Y.G. Yi, Major corrosion influence factors analysis in the production well of CO2 flooding and the optimization of relative anti-corrosion measures, J. Petrol. Sci. Eng. 200 (2021) 108052. [5] A. Kahyarian, M. Singer, S. Nesic, Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: a review, J. Nat. Gas Sci. Eng. 29 (2016) 530-549. [6] M. Javidi, R. Chamanfar, S. Bekhrad, Investigation on the efficiency of corrosion inhibitor in CO2 corrosion of carbon steel in the presence of iron carbonate scale, J. Nat. Gas Sci. Eng. 61 (2019) 197-205. [7] B.H. Xu, B. Yuan, Y.Q. Wang, L. Zhu, H2S-CO2 mixture corrosion-resistant Fe2O3-amended wellbore cement for sour gas storage and production wells, Constr. Build. Mater. 188 (2018) 161-169. [8] Y. Zhou, F. Xie, D. Wang, Y.X. Wang, M. Wu, Carbon capture, utilization and storage (CCUS) pipeline steel corrosion failure analysis: a review, Eng. Fail. Anal. 155 (2024) 107745. [9] R. Barker, D. Burkle, T. Charpentier, H. Thompson, A. Neville, A review of iron carbonate (FeCO3) formation in the oil and gas industry, Corros. Sci. 142 (2018) 312-341. [10] H. Mansoori, D. Young, B. Brown, M. Singer, Influence of calcium and magnesium ions on CO2 corrosion of carbon steel in oil and gas production systems - A review, J. Nat. Gas Sci. Eng. 59 (2018) 287-296. [11] S.Q. Guo, L.N. Xu, L. Zhang, W. Chang, M.X. Lu, Characterization of corrosion scale formed on 3Cr steel in CO2-saturated formation water, Corros. Sci. 110 (2016) 123-133. [12] W. Li, L.N. Xu, L.J. Qiao, J.X. Li, Effect of free Cr content on corrosion behavior of 3Cr steels in a CO2 environment, Appl. Surf. Sci. 425 (2017) 32-45. [13] L.J. Wang, Y.H. Wei, J.J. Ma, S.H. Zhang, B.S. Liu, H.J. Wu, P.P. Wu, Y.J. Feng, Y.Z. Zhang, Optimizing the resistance of Cr-advanced steel to CO2 corrosion with the addition of Ni, J. Mater. Res. Technol. 32 (2024) 97-111. [14] S.H. Zhang, T.T. Bian, L.M. Mou, X.Y. Yan, J.L. Zhang, Y.Z. Zhang, B.S. Liu, Alloy design employing Ni and Mo low alloying for 3Cr steel with enhanced corrosion resistance in CO2 environments, J. Mater. Res. Technol. 24 (2023) 1304-1321. [15] H. Karimi Abadeh, M. Javidi, Assessment and influence of temperature, NaCl and H2S on CO2 corrosion behavior of different microstructures of API 5L X52 carbon steel in aqueous environments, J. Nat. Gas Sci. Eng. 67 (2019) 93-107. [16] X. Chen, C.Y. Li, N.X. Ming, C. He, Effects of temperature on the corrosion behaviour of X70 steel in CO2-Containing formation water, J. Nat. Gas Sci. Eng. 88 (2021) 103815. [17] X.Q. Yue, Y.Q. Ren, L.Y. Huang, S. Zou, L. Zhang, Y. Hua, The role of Cl- in the formation of the corrosion products and localised corrosion of 15Cr martensite stainless steel under an CO2-containing extreme oilfield condition, Corros. Sci. 194 (2022) 109935. [18] T. Sunaba, T. Ito, Y. Miyata, S. Asakura, T. Shinohara, T. Yakou, Y. Tomoe, H. Honda, Influence of chloride ions on corrosion of modified martensitic stainless steels at high temperatures under a CO2 environment, Corrosion 70 (10) (2014) 988-999. [19] Y. Hua, A. Shamsa, R. Barker, A. Neville, Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl-, Ca2+ and Mg2+ in high pressure CO2 environments, Appl. Surf. Sci. 455 (2018) 667-682. [20] W. Zhou, W. Lan, X.L. Cao, H.D. Deng, Y.B. Yan, X.L. Hou, Effect of a high concentration of chloride ions on the corrosion behaviour of X80 pipeline steel in 0.5 mol L-1 NaHCO3 solutions, Int. J. Electrochem. Sci. 13 (2) (2018) 1283-1292. [21] N.Y. Zhang, D.Z. Zeng, G.Q. Xiao, J.F. Shang, Y.Z. Liu, D.C. Long, Q.Y. He, A. Singh, Effect of Cl- accumulation on corrosion behavior of steels in H2S/CO2 methyldiethanolamine (MDEA) gas sweetening aqueous solution, J. Nat. Gas Sci. Eng. 30 (2016) 444-454. [22] Q.Y. Liu, L.J. Mao, S.W. Zhou, Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments, Corros. Sci. 84 (2014) 165-171. [23] S.H. Zhang, L.F. Hou, H.Y. Du, H. Wei, B.S. Liu, Y.H. Wei, A study on the interaction between chloride ions and CO2 towards carbon steel corrosion, Corros. Sci. 167 (2020) 108531. [24] F. Pessu, R. Barker, A. Neville, CO2 corrosion of carbon steel: the synergy of chloride ion concentration and temperature on metal penetration, Corrosion 76 (11) (2020), https://doi.org/10.5006/3583. [25] Y.L. Wu, D.P. Zhang, G.Y. Cai, X.X. Zhang, Z.H. Dong, Effects of temperature on polarity reversal of under deposit corrosion of mild steel in oilfield produced water, corros eng sci technol 55 (8) (2020) 708-720. [26] H. Mansoori, D. Young, B. Brown, S. Nesic, M. Singer, Effect of CaCO3-saturated solution on CO2 corrosion of mild steel explored in a system with controlled water chemistry and well-defined mass transfer conditions, Corros. Sci. 158 (2019) 108078. [27] R. Rizzo, R. Ambat, Effect of initial CaCO3 saturation levels on the CO2 corrosion of 1Cr carbon steel, Mater. Corros. 72 (6) (2021) 1076-1090. [28] C.Q. Ren, X. Wang, L. Liu, H.E. Yang, N. Xian, Lab and field investigations on localized corrosion of casing, Mater. Corros. 63 (2) (2012) 168-172. [29] C. Ding, K.W. Gao, C.F. Chen, Effect of Ca2+ on CO2 corrosion properties of X65 pipeline steel, Int. J. Miner. Metall. Mater. 16 (6) (2009) 661-666. [30] S. Navabzadeh Esmaeely, Y.S. Choi, D. Young, S.Nesic, Effect of calcium on the formation and protectiveness of iron carbonate layer in CO2 corrosion, Corrosion 69 (9) (2013) 912-920. [31] L.H. Shi, C.Q. Wang, C.J. Zou, Corrosion failure analysis of L485 natural gas pipeline in CO2 environment, Eng. Fail. Anal. 36 (2014) 372-378. [32] M. Javidi, S. Bekhrad, Failure analysis of a wet gas pipeline due to localised CO2 corrosion, Eng. Fail. Anal. 89 (2018) 46-56. [33] X.P. Li, Y. Zhao, W.L. Qi, J.F. Xie, J.D. Wang, B. Liu, G.X. Zeng, T. Zhang, F.H. Wang, Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel, Appl. Surf. Sci. 469 (2019) 146-161. [34] R. Rizzo, S. Gupta, M. Rogowska, R. Ambat, Corrosion of carbon steel under CO2 conditions: effect of CaCO3 precipitation on the stability of the FeCO3 protective layer, Corros. Sci. 162 (2020) 108214. [35] R.C. Xie, Z.Y. Gu, Y. Yao, H. Xu, K. Deng, Y. Liu, Electrochemical study on corrosion behaviors of P110 casing steel in a carbon dioxide-saturated oilfield formation water, Int. J. Electrochem. Sci. 10 (7) (2015) 5756-5769. [36] R.A. De Motte, R. Barker, D. Burkle, S.M. Vargas, A. Neville, The early stages of FeCO3 scale formation kinetics in CO2 corrosion, Mater. Chem. Phys. 216 (2018) 102-111. [37] L.J. Mu, W.Z. Zhao, Investigation on carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water, Corros. Sci. 52 (1) (2010) 82-89. [38] Y. Zhao, J.F. Xie, G.X. Zeng, T. Zhang, D.K. Xu, F.H. Wang, Pourbaix diagram for HP-13Cr stainless steel in the aggressive oilfield environment characterized by high temperature, high CO2 partial pressure and high salinity, Electrochim. Acta 293 (2019) 116-127. [39] J.Y. Zhu, L.N. Xu, M.X. Lu, L. Zhang, W. Chang, L.H. Hu, Cathodic reaction mechanism of 3Cr low alloy steel corroded in CO2-saturated high salinity solutions, Int. J. Electrochem. Sci. 10 (2) (2015) 1434-1446. [40] H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li, D.W. Zhang, Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater, Corros. Sci. 144 (2018) 145-162. [41] Z.H. Gao, Y.X. Liu, C. Wang, H.S. Yang, L.N. Xu, L.J. Qiao, The study on the influence of aluminum on the CO2 corrosion resistance of 3%Cr steel, Anti Corros. Meth. Mater. 69 (2) (2022) 177-182. [42] B. Wang, L.N. Xu, G.Z. Liu, M.X. Lu, Corrosion behavior and mechanism of 3Cr steel in CO2 environment with various Ca2+ concentration, Corros. Sci. 136 (2018) 210-220. [43] Y. Hua, X.Q. Yue, H.F. Liu, Y. Zhao, Z.Z. Wen, Y.X. Wang, T. Zhang, L. Zhang, J.B. Sun, A. Neville, The evolution and characterisation of the corrosion scales formed on 3Cr steel in CO2-containing conditions relevant to geothermal energy production, Corros. Sci. 183 (2021) 109342. [44] Z.H. Luo, W. Yan, P.K. Zhu, L. Guan, K.Y. Wang, S.T. Ye, X.R. Xu, Corrosion behavior of a 3 % Cr tubing steel in a CO2 saturated high-salinity brine, Mater. Test. 60 (3) (2018) 245-250. [45] H.B. Yu, C.F. Chen, R.J. Jiang, P. Qiu, Y.J. Li, Migration of ion vacancy in hydroxylated oxide film formed on Cr: a density functional theory investigation, J. Phys. Chem. C 116 (48) (2012) 25478-25485. [46] Q. Wang, L.C. Zhang, A.L. Zhang, Corrosion of Q345B steel in soil solution extract containing chloride ions, Int. J. Electrochem. Sci. 17 (2) (2022) 220215. [47] B.J. Dong, W. Liu, L.J. Chen, T.Y. Zhang, Y.M. Fan, Y.G. Zhao, H. Li, W.J. Yang, Y.P. Sun, Unraveling the effect of chloride ion on the corrosion product film of Cr-Ni- containing steel in tropical marine atmospheric environment, Corros. Sci. 209 (2022) 110741. [48] M.A. Ahmadi, A. Bahadori, S.R. Shadizadeh, A rigorous model to predict the amount of Dissolved Calcium Carbonate Concentration throughout oil field brines: Side effect of pressure and temperature, Fuel 139 (2015) 154-159. [49] Z. Ma, X. Gao, B. Brown, S. Nesic, M. Singer, Improvement to water speciation and FeCO3 precipitation kinetics in CO2 environments: updates in NaCl concentrated solutions, Ind. Eng. Chem. Res. 60 (47) (2021) 17026-17035. [50] S.N. Esmaeely, D. Young, B. Brown, S.Nesic, Effect of incorporation of calcium into iron carbonate protective layers in CO2 corrosion of mild steel, Corrosion 73 (3) (2017) 238-246. [51] S.P. Feng, K. Huang, Interfacial salt effect induced by competitive adsorption of coexisting ions: a new understanding of the mass transfer selectivity in the near-interface boundary layer, Sep. Purif. Technol. 336 (2024) 126244. [52] Z. Meng, R.Z. Gao, Q.Q. He, Z.Y. Miao, Q.Z. Tian, X.H. Gui, K.J. Wan, E.L. Xu, A noval salt effect coupled vacuum distillation process for high efficient ultra-azeotropic reuse of spent HCl, Chem. Eng. J. 486 (2024) 150191. |